
Parlay: A Web Application Designed to

Facilitate Competition in the Form of Sports

Betting Leagues

A Manuscript

Submitted to

the Department of Computer Science

and the Faculty of the

University of Wisconsin–La Crosse

La Crosse, Wisconsin

by

Drew Lohmeyer

in Partial Fulfillment of the

Requirements for the Degree of

Master of Software Engineering

December, 2021

Parlay: A Web Application Designed to Facilitate Competition in
the Form of Sports Betting Leagues

By Drew Lohmeyer

We recommend acceptance of this manuscript in partial fulfillment of this candidate’s re-
quirements for the degree of Master of Software Engineering in Computer Science. The
candidate has completed the oral examination requirement of the capstone project for the
degree.

Kenny Hunt, Ph.D. Date
Examination Committee Chairperson

Jason Sauppe, Ph.D. Date
Examination Committee Member

Michael Petullo, Ph.D. Date
Examination Committee Member

Abstract

This manuscript outlines the software development processes and principles followed through-
out the creation of Parlay, a sports betting web application designed for entertainment and
competition. Users join together in leagues and place sports bets using virtual currency.
The user with the most virtual currency at the end of a league is declared the winner. The
requirements, design, implementation, testing, and deployment of Parlay are all described
in depth below in an effort to encapsulate the project’s entire development effort.

i

Acknowledgements

I would like to express my sincere gratitude to my project advisor Dr. Kenny Hunt for his
continuous support and guidance. His vast knowledge of the Web Development field was
very beneficial to me throughout the development of my project. I would also like to thank
the entire Department of Computer Science at the University of Wisconsin–La Crosse for
the countless hours of instruction along the way. To my family and fiancé, thank you for all
of your encouragement throughout my entire academic journey.

ii

Table of Contents

Abstract . i
Acknowledgments . ii
List of Tables . iv
List of Figures . v
Glossary . vi
1. Introduction . 1
2. Requirements . 3

2.1. Overview . 3
2.2. Life Cycle Model . 3
2.3. Functional Requirements . 6
2.4. Non-Functional Requirements . 7

3. Design . 8
3.1. Architecture Overview . 8
3.2. Client Design . 9

3.2.1. User Interface Design . 9
3.2.2. Web-page Design . 10

3.3. Database Design . 11
3.4. Server Design . 16

3.4.1. API Data Layer . 16
3.4.2. Cron Scheduling Automation Layer 19

4. Implementation . 23
4.1. Working with Timestamps . 23
4.2. Transmitting Real-Time Data . 24
4.3. Use of Object-Relational Mapping for Database Access 26
4.4. Security . 27

4.4.1. User Authentication and Authorization 27
4.4.2. Input Validation and SQL Injection Protection 29

5. Testing . 32
5.1. Unit Testing . 32
5.2. Integration Testing . 32
5.3. Acceptance Testing . 34

6. Deployment and Future Enhancements . 35
6.1. Deployment . 35
6.2. Future Enhancements . 35

7. Bibliography . 37
8. Appendices . 38

iii

List of Tables

1 Description of Login Screen UI Elements . 12
2 Pick Selection Test Case Breakdown . 33

iv

List of Figures

1 Sprint 5 Documentation . 4
2 Burndown Chart . 5
3 Hierarchy of User Functionality . 6
4 Architecture Overview . 8
5 Figma Mock-up of League Home Page . 10
6 Actual League Home Page . 11
7 Static Login Screen Used in UI Design Document 12
8 Medium and Mobile Sized League Home Page 13
9 ER-Diagram for Parlay . 14
10 Participant and Bet Database Table Design 15
11 User API Endpoints . 18
12 League API Endpoints . 19
13 Game API Endpoint . 20
14 Bet API Endpoints . 20
15 Create Bet API Endpoint . 21
16 Daily Server Health Check Report . 22
17 Example of Moment.js Usage . 24
18 Formatting a Date String Using Moment.js 24
19 Subscribing to Client WebSocket Connections 25
20 Emitting Socket Events to Client When Refreshing Game Data 25
21 Registering Client With Server Socket . 26
22 Database Bet Model Defined With Objection.js 27
23 Example Select Query Using Objection.js . 27
24 Inserting a New Bet With Objection.js . 28
25 JSON Web Token Passport Middleware . 29
26 Applying Validators to Angular Form Controls 29
27 Place Bet Request Body Validation . 30
28 Defending Against SQL Injection Attacks . 31
29 Valid and Invalid Selected Picks . 32
30 Landing Page . 38
31 Create League Page . 38
32 Upcoming League Home Page . 39
33 Place Bet Modal . 39
34 Week Overview Tab . 40
35 League Standings Page . 40

v

Glossary

Burndown Chart

A burndown chart tracks the total amount of work remaining in a project versus time. It
provides a visualization of the speed of the development process and can be a useful tool
when estimating when a project will be completed.

DNS

The Domain Name System (DNS) is responsible for mapping domain names typed in a URL
search bar to their corresponding server IP addresses.

JSON Web Token (JWT)

JSON Web Token is a data transmission protocol that can be used as a secure communication
strategy between two parties. Tokens are digitally signed to establish a level of trust in the
identities of both token senders and receivers.

Moneyline

The moneyline contains the odds, or likelihood, that a specific team will win a game. The
moneyline can be used when placing bets to predict which team will win a game.

NPM

Node Package Manager (NPM) is a package manager that can be used across any JavaScript-
based framework such as Angular and Node.js. The package manager accesses 3rd party tools
from the NPM registry, or library, that can then be used as dependencies for various project
needs.

Odds

Odds (American odds) are numeric values that describe how likely an arbitrary outcome is
to occur. Negative values indicate that an outcome is more likely than not to occur and
positive values indicate the opposite. Also, odds directly correspond to bet payouts. For
example, if the odds for an outcome were -200, $200 would need to be risked in order to
profit $100. If the odds for an outcome were +200, then risking $100 would profit $200.

Reverse Proxy

A reverse proxy is special proxy server that sits in front of a web server and redirects all
network traffic to a separate server before reaching the intended origin.

vi

Spread

The spread for a sporting contest is an estimate of the margin of victory or defeat for the
teams competing in the contest. A negative spread value for a team indicates that the team
is expected to win the game by that value. A positive spread value for a team indicates that
the team is expected to lose the game by that value.

Total

The total for a game is the estimated number of combined points scored by both teams
competing in a game. Bets can be placed using the expected total value by predicting if the
actual total value will be over or under the expected value.

UTC

Coordinated Universal Time (UTC) is a universal time standard that is used to regulate
global time. UTC time is located at the Prime Meridian in Greenwich, London and is not
impacted by Daylight Savings Time

vii

1. Introduction

Each year, as the summer months wind down and the leaves begin to turn, there is one
additional season in the air besides fall: football season. In 2019, nearly 17 million people
attended National Football League (NFL) games across the United States [1] with another
180 million watching games on either cable or broadcast television over the course of the
season. The National Collegiate Athletic Association’s football league (NCAAF) attracts an
immense fan base as well. The top NCAAF sub-division, the FBS, includes 130 universities
dispersed across the country that compete in packed stadiums filled with students, alumni,
and others cheering on their respective teams. In the current day and age of extreme data
collection and advanced analytics, sports fanatics have started to find more ways to enter-
tain themselves besides simply attending or viewing these football contests. One of these
entertainment venues is through participation in the global sports betting market which is
estimated to grow to a valuation of $155 billion by 2024.

Sports betting (or sports gambling) is the act of placing a sports bets. A bet consists
of an amount of currency a bettor is willing to risk, one or more sporting contest predic-
tions, and the amount of currency that the bettor will gain if all predictions are correct as
a payout. Payouts are determined by the likelihood that all predictions contained in a bet
will be correct. For example, risking $100 on a team that is not expected to win a game
(an underdog) will payout a much greater amount if successful as compared to successfully
risking that same amount on a team that is heavily favored to win.

According to a recent study by sports betting news outlet PlayUSA, optimistic football
fans are expected to risk more than $20 billion in the form of sports bets on the 2021 NFL
and NCAAF seasons. It is also estimated that the companies brokering these bets (sports-
books) will pocket over $1.5 billion or 7.5% of the total money at risk across the betting
landscape. [2] So, what keeps people coming back? Bettors crave the thrill and excitement
of watching their predictions play out during dramatic sports contests all while having the
opportunity to gain financially.[3] Sports gambling also carries aspects that allow a person
to feel like they are in control. Unlike blindly pushing a button on a casino slot machine,
bettors have the opportunity to analyze past game data and take prediction advice from “the
experts” in order to convince themselves they have a statistical advantage over the sports-
book providers.[4] However, despite the growing popularity of sports betting, one thing will
remain certain moving forward; the average participant will continue to lose. Sports betting
odds and payouts are set using complex algorithms that will always favor the house over time.

“Parlay: the sports betting league” is a web application designed for entertainment pur-
poses that enables users to place bets on upcoming football contests. Rather than compet-
ing against sportsbook providers that will always have an unfair advantage, users compete
against one another using virtual currency in organized groups called leagues. This virtual
league-based betting format creates a unique environment in which users still experience
the sports gambling highs and lows but with no risk and a much more attainable goal of
performing better than your friends who are playing by the same rules.

1

Users are able to log onto this web application and create leagues. After creating a league,
a user is able to invite friends to create a Parlay account and join the league. Parlay breaks
leagues down into weeks that begin and end every Tuesday morning. Each week all league
participants are required to risk some fixed percentage of their currency by placing bets on
upcoming NFL and NCAAF games. Game data, such as betting odds and live scores, is
automatically updated periodically, and bets are evaluated based on final game results. As
weeks progress and bets are placed, users attempt to rise to the top of their league’s stand-
ings by winning bets and gaining virtual currency. If at any point throughout the duration
of the league a participant’s balance hits $0.00, he or she is eliminated from the league. The
last user remaining or the user with the most currency at the end of the league is declared
the winner. Overall, these leagues create a friendly but engaging sports betting interface
targeted for individuals who enjoy watching some of the most talented athletes in the world
compete against one another on the football field.

2

2. Requirements

2.1. Overview

This section first details the development processes used by the author to complete the
project and also describes how these processes relate to two software development life cycle
models. This discussion is followed by a detailed explanation of the functional and non-
functional requirements considered for this project.

2.2. Life Cycle Model

Software development life cycle models lay the foundation for how a project should be devel-
oped over a long period of time in order to ensure deadlines are met and an exceptional final
product is produced. There are many different models currently in use across the software
development industry. Each of these models have various strengths and weaknesses and can
be considered more or less advantageous based on the characteristics of a project such as
team size, time constraints and development complexity.[5] For this project, a combination
of both incremental prototyping and agile methodologies was used. The members involved,
or stakeholders, include the author as the sole developer, Dr. Kenny Hunt as the product
owner, and the general population as the system end-users.

Incremental prototyping is a life cycle model that focuses on dividing a software project
into manageable pieces, prioritizing functionality that is considered the most important for
a project. The creation of these pieces is performed in a series of iterations that are driven by
the desire to receive strong customer feedback at many stages throughout the development
process. With each iteration, a new prototype is constructed and demoed as key features
are implemented, tested, and merged. In addition, these manageable pieces can be designed
at an earlier stage of the development process and updated with the completion of each
prototype.

In this project, Dr. Hunt’s advice of fully designing and implementing the front-end user
interface (UI) as an initial prototype followed by the back-end API and database afterwards
was used. This implementation strategy closely follows the incremental prototyping model.
Once all of the functionality was described and arranged in the UI (the most important piece
of the web application), the server-side web API and associated functionality was relatively
simple to design and implement in later prototypes.

The agile life cycle model is similar to the incremental prototyping model in the sense that
both models decompose the workload down into smaller iterations, and design and testing is
performed throughout the entirety of the project. The biggest difference between the two is
that with agile, functionality is implemented by a complete user story at a time. All necessary
user stories are gathered at the beginning of the project and placed into a prioritized product
backlog. Once the backlog is created, agile iterations called sprints can begin. Sprints are
much more defined and organized compared to incremental prototyping iterations. They
are encapsulated in a strict, repeatable time frame, usually one to four weeks. In general,

3

a sprint starts with sprint planning to determine which user stories will be removed from
the backlog and implemented to completion followed by the actual development of said user
stories. A sprint review then completes each sprint and presents the completed work to the
product owner, and a sprint retrospective is used to identify and discuss areas of weakness
to improve development processes moving forward.

For the development of the Parlay web application, a modified agile approach was applied
in parallel with the aforementioned incremental prototyping model. The project manage-
ment consisted of a set of user stories and 40-hour time-boxed sprints comprised of the next
most important pieces of functionality rather than fully defined user stories. In between
each sprint, the author, who was also the sole developer for the project, met with Dr. Hunt
to perform the sprint review and retrospective for the completed sprint and also the sprint
planning for the next sprint. As the product owner, Dr. Hunt was presented with each
sprint’s completed work and was given the opportunity to provide constructive feedback to
the author. The next sprint was planned by the author with the next most important tasks
prior to each meeting and was also discussed with Dr. Hunt. Each task was given an esti-
mation of the total amount of hours required to complete it along with links to which user
stories the task was targeting. Any of the tasks not completed within the set sprint schedule
were removed, re-evaluated, and usually placed at the beginning of the next sprint. All user
stories and tasks were documented and managed via monday.com. This site provides its
users with flexible options for planning, tracking, and managing work items. An example
of a single sprint’s documentation for Parlay is shown in Figure 1. The tasks in Sprint 5
took longer than expected to complete, resulting in a few tasks being removed and placed
in Sprint 6.

Figure 1. Sprint 5 Documentation

This software development strategy used by the author was selected because of its organiza-
tional focus and overall flexibility. Early on in development the author was able to remove
the uncertainty surrounding complex features of the application while still maintaining an

4

organized and calculated foundation via sprint execution. As many of the requirements of
this application were not trivial, the author felt most comfortable doing some initial planning
and design up front followed by gradual prototyping of important functionality. In contrast,
the waterfall model, for example, requires extensive and complete design documentation
before implementation can begin. All of that planning up front assumes the knowledge of
every detail of every project component which did not seem feasible for this project. Another
appealing feature of the chosen life cycle models was the routine schedule provided by the
sprint structure. Sprints come equipped with goals and expectations for development which
produces constant motivation for a large project taking place over the course of many months.

In all, the development of Parlay consisted of 485 total hours contained within 11 sprints
taking place from January 6, 2021 through September 1, 2021. Each sprint was targeted
for 40 hours of estimated work. From January through mid-May, the author was able to
contribute roughly 20 hours per week towards the project resulting in two weeks allocated
per sprint for the first eight sprints. For the remainder of the project, the author’s capacity
decreased to roughly 10 hours per week resulting in the final three sprints having a duration
of four weeks. Figure 2 displays the burndown chart for the project. The x-axis is broken

Figure 2. Burndown Chart

down into two week increments and the y-axis represents effort spent in hours. Each data
point consists of the number of hours estimated for the two week period and the number
of hours actually contributed. The actual number of hours is subtracted from the total re-
maining effort to create the data points for the blue Remaining Effort line. Lastly, the green

5

dashed line represents the ideal burndown rate. An average of 28.5 hours was contributed
every two weeks over the course of the entire project. One notable point in the burndown
chart includes a 10 hour underestimation for the 3/17–3/31 data point. The development
of the Create League UI page took much longer than anticipated due to some unforeseen
complexity surrounding league start and end dates. Another notable time frame was 5/12–
5/26. Following the spring semester, the author took a short break from development and
resumed in early June.

2.3. Functional Requirements

As agile techniques were applied in this project, a complete list of user stories were identified
before implementation of the product began. These user stories were the foundation for all
development activities and served as the project’s functional requirements.

Three user groups are involved in the Parlay web application. The first type of user is
a universal user which includes any user that visits the site. The next type of user is a
league participant. League participants are universal users that have joined together with
other users to form a league. Finally, within each league, one of the league participants is
designated as the league manager, the third user group. This hierarchy of users is shown in
Figure 3.

Figure 3. Hierarchy of User Functionality

The user stories for the universal user group describe account management functionality
such as registering for an account, signing in and out of the application, resetting a forgotten
password, and changing an existing password. The rest of the universal user actions include
creating a new league, joining an existing league, viewing a list of all joined leagues, and
accessing a user help screen.

League participants have the ability to view their league’s settings and the names of the
other participants in their league. They can also change their team name or leave a league
before it starts. Once a league begins, participants can view any upcoming or past foot-
ball games that were played after the league’s start date. Each game consists of the teams
competing, any available scores, and the associated bookmaker odds which map to specific

6

outcomes of the game. League participants are able to use these odds and their available
balance to place bets on any game before it starts by making predictions on the final score of
the game. As bets are placed each week, users can track the status and results of their bets
along with all bets placed by other users in the league both for current and past weeks. An
active standings page is also maintained as participants’ balances move up and down over
the course of the league.

The league manager user group inherits all available functionality of the first two users
groups and is also able to perform various league bookkeeping actions. Prior to a league
becoming active, a league manager can change league settings, send out email invitations for
the league, remove users from the league, change the league’s public access code, reassign
their league manager privileges, and delete the league all together. Once a league completes,
rather than needing to create a new league, a league manager can simply choose to reactivate
the completed league which allows the league to start over with all of the same users still in
the league.

2.4. Non-Functional Requirements

Non-functional requirements describe attributes of a software system rather than specific
functional use cases. These requirements are essential when evaluating the overall perfor-
mance and usability of a product. The following non-functional requirements were considered
for this project.

• The most recent live bookmaker odds must be displayed to all users at all times to
prevent unfair advantages when placing bets.

• All user passwords must be hashed before being stored in the database.

• Due to a high reliance on scheduled server events, the system shall be able to identify
and recover from a missed or failed scheduled event.

• Appropriate web development security characteristics such as secure user authentica-
tion, effective data cleaning and validation, and trusted, encrypted network communi-
cation must be applied.

7

3. Design

3.1. Architecture Overview

The Parlay application follows the typical web-based client, server, database architecture.
The technologies used for development were Angular, a front-end JavaScript based frame-
work, Node.js, a back-end JavaScript runtime environment, and MySQL, a relational database
management system. The application is hosted by Amazon Web Services (AWS), and it
is comprised of both an Elastic Compute Cloud (EC2) server instance and a Relational
Database Service (RDS) MySQL instance. Figure 4 provides a high-level overview of the
core application components and how they interact with each other. This chart is described
in detail below.

Figure 4. Architecture Overview

All interactions with Parlay begin with a client web browser navigating to the parlayleagues.com
domain owned by the author. The browser contacts the AWS EC2 server running an NG-
INX web server listening for web traffic on ports 80 and 443. Any web traffic that targets
port 80 is redirected to port 443 to ensure a secure and encrypted connection. The NGINX
web server supplies the static, compiled Angular code to the browser to display the client
interface. As the application is used, the client makes AJAX requests to the server which
are passed along to the internal Node.js server’s API layer via a reverse proxy. The API
layer issues queries against the AWS RDS MySQL instance in order to handle the requests
coming from the client.

Separate from client interactions with the API layer, the Node.js server has additional re-
sponsibilities. The Parlay web application is constructed around the availability and access

8

of real-time sports data. In order to keep the interface up-to-date, Parlay needs to refresh
its sports data periodically. This is automated through the use of cron schedules which have
the ability to trigger events at set times throughout the day. Cron jobs are defined by cron
rules and are asynchronously managed internally by the server’s Operating System. Parlay
subscribes to a 3rd party API called SportspageFeeds. While SportspageFeeds provides sev-
eral tiers of access to their API, this project relied on the free tier which allows up to 20 API
requests each day. Each API call retrieves the most recent bookmaker odds and other game
data which is parsed and stored into the appropriate database tables for future re-use.

3.2. Client Design

This sub-section describes the user interface design for this project.

3.2.1. User Interface Design

Before any design documents or feature implementation began, the entire Parlay web appli-
cation interface was created in a user interface design tool called Figma. Figma allows users
to efficiently test out various design ideas through its drag and drop mechanisms. The end
result for this project was a static version of every web-page necessary for the fully functional
end product. When it came time to implement the user interface pages using the Angular
front-end framework, the Figma UI mock-ups were extremely useful and expedited the de-
velopment effort greatly. Figures 5 and 6 compare the most complex Parlay screen with
Figure 5 showing the initial Figma static version and Figure 6 showing the actual version
deployed in the completed application.

It is evident that the two screen captures are very similar. In the center Place Bets container,
the games and bottom pending bet section are nearly identical. One addition in the actual
version is the use of team logos. The logos assist users in identifying the teams competing
in each game and add an additional sense of separation between each game in the list. The
actual version also adds a search input which allows users to easily find a specific team or
game. Above the Place Bets container, the actual version condensed the week navigation
feature and added a Weeks Remaining visual cue to inform users how many weeks are left in
the league. The top toolbar remained the same in both versions. Moving to the right side of
the screen, a Must Risk value was added and the bet sidebar’s layout was adjusted slightly.
Overall, the static mock-up was followed very closely during implementation.

Once finalized, the static Figma mock-ups were annotated with low-level, detailed behavioral
descriptions. The purpose of this document was to describe each element on every page and
consider all possible user interactions with an element that could result in state changes or
potential error cases. This allowed the author to dive deeper into the user interface design
and think about the true purpose and need for each UI element in the application. An
example of how this process was documented is shown in Figure 7 and Table 1.

Once the user interface design and documentation was complete, the creation of the project’s
user stories and database design was relatively straightforward. The static UI screens made

9

Figure 5. Figma Mock-up of League Home Page

it easy to visualize all of the functionality available to a user and, similarly, all of the tables
and attributes necessary for the database.

3.2.2. Web-page Design

The client web-pages were all developed using the JavaScript-based Angular framework and
Bootstrap 4. Angular allows for web applications to be decomposed into reusable compo-
nents in a modular fashion. Each component consists of an HTML file, Typescript controller
file, and a CSS style sheet. The HTML file structures all of the elements for the component
and binds itself to variables defined in the controller and event listeners. The controller file
processes the data needed for the component. These files have the ability to send and receive
data and interact with other components. A common scenario within a component begins
with a button element placed in the HTML file that listens for click events. When the button
is clicked, it invokes a handler located inside of the Typescript controller file. These handler
methods are responsible for initiating any dynamic action that takes place on a web-page.
Two examples of the dynamic action that these handlers invoke include navigating a user to
a different screen or firing an API request to GET or POST data.

While Angular’s CSS style sheets allow rules to be applied at the component scope level,
the author tried to avoid the use of manual CSS rules as much as possible. Bootstrap is an
open-source CSS framework that contains many design templates that allow for consistent
styling across an application. One such design pattern provided by Bootstrap that was used

10

Figure 6. Actual League Home Page

heavily in the Parlay web application was screen size responsive styling. As a screen size
grows or shrinks, elements on the page dynamically resize or become visible or hidden. This
allows for a web application to deliver the best possible user experience regardless of the
screen size visiting the site. Figure 8 shows the same league home page in Figure 6 above
at a medium and mobile screen size. Although the mobile screen layout is missing some key
visual information, users are still able to place bets and navigate the site while on-the-go.

3.3. Database Design

The first task when considering a database for the Parlay web application was selecting which
database management system to use. It was determined from initial project planning that a
relational database management system (RDBMS) would be the best fit. The two primary
factors that went into this decision were that the data requirements for the project could
be structured nicely in a relational scheme with primary and foreign keys and that complex
SQL queries could be written easily for any data retrieval need.[6] From there, the author
did not have a strong connection with any of the major RDBMS providers, so after a little
research, MySQL was chosen because of its industry popularity and cheap access within the
AWS RDS console.

Using the completed UI mock-ups and user stories, a high-level entity relationship (ER)
diagram was created. The diagram is shown in Figure 9 and is described below.

11

Figure 7. Static Login Screen Used in UI Design Document

Table 1. Description of Login Screen UI Elements

12

Figure 8. Medium and Mobile Sized League Home Page

A single user can become a participant in many leagues. Many participants make up a
league; one of which is also the league manager. Before a league starts, invitations can be
sent via email that allow anyone to create a Parlay account and join that league. Once a
league has started, each participant has the opportunity to place bets. A single bet is made
up of many picks that each reference a single game. Every game is played at a single venue,
contains many periods, is played by two teams, and is associated with a single sports league
such as the NFL. Every team is similarly organized in a sports league and can also be ranked
in a weekly poll. A set of polls are all associated with a single season and each season is
associated with a sports league. Lastly, all leagues are able to select a set of sports leagues
that it has available to place bets on.

Next, the ER-Diagram was broken down into the database tables and attributes needed
to fulfill the application’s user story requirements. The MySQL create table statements for
two of these tables is shown in Figure 10.

Each entry within the Participant table is automatically assigned a unique participantId
which serves as the primary key. There are two foreign keys within the table that reference
the user account that the participant is associated with and the league that the participant
is in. Each participant has a customizable teamName along with a balance, prevBalance,
and prevRank. The balance attribute tracks the active amount of currency remaining for a
participant. The prevBalance attribute holds the amount of currency a participant had at

13

Figure 9. ER-Diagram for Parlay

14

Figure 10. Participant and Bet Database Table Design

the end of the previous week. This value is needed in order to determine how much cur-
rency a participant is required to risk in the current week. The prevRank column is used to
show a trend value in the standings page that tracks if a participant has moved up or down
in the overall league standings. The atRisk field holds the total amount of currency that
is currently placed on bets that have not yet completed, and similarly, the weekTotalRisk
attribute holds the total amount of currency that has been risked on bets throughout the
current week. If this value is less than the amount that the participant must risk at the
end of the week, the difference is deducted from the participant’s balance. The number of
wins, losses, and ties is also tracked for each league participant. One of these three values is
updated every time a participant’s bet is evaluated. Finally, the leaveLeagueDate column of
type date-time is a UTC formatted date string used to track if and when a participant has
left the league. The field is set to null if the participant is still a member of the league. All
date-time values stored in the database remain consistent as UTC formatted strings.

For the Bet table, it is similar to the Participant table in that it has an auto-incremented
integer primary key. There is also one foreign key included in the table, participantId, that
maps to the participant who placed the bet. A bet has one of three possible statuses, ‘placed’,
‘active’, or ‘settled’. When a bet is created, it is assigned a betStatus of ‘placed’. Once one
or more of the games involved in the bet have started, the bet gets moved to the ‘active’
betStatus, and it is moved to ‘settled’ once it is determinate. The amount of a bet is how
much currency the participant decided to risk on the bet and the odds attribute holds the
total bet odds, or the likelihood that the bet will succeed. The amount and odds fields are
what determines the participant’s maxWin value. The actualWin column starts at $0.00

15

when the bet is placed and will either be changed to negative one times the amount of the
bet if the bet were to fail or the maxWin value if the bet were to succeed. Lastly, the
creationDate attribute tracks when each bet was placed by a league participant and entered
into the database.

For more sensitive database tables such as the User table and the League table, the pri-
mary key attributes for these tables were created as type BINARY(16) to hold a universally
unique identifier (UUID). These columns were populated using the MySQL UUID() method
which generates a unique 128-bit number to represent the UUID. The UUID TO BIN() and
BIN TO UUID() methods were also used when retrieving and storing these id values as
strings and binary values. UUIDs were used for the identifiers that were commonly used
in the application’s URL query parameters to help enhance security. Unlike a typical auto-
incremented integer field, it is impossible to predict the other entries surrounding a UUID.
If auto-incremented identifiers were used in the URL, malicious users would be able to easily
guess surrounding identifiers which brings them one step closer to accessing data that they
should not be able to access.

3.4. Server Design

The Node.js server for the Parlay web application was the last portion of the project that was
designed and implemented. The Parlay server is broken down into two main components:
the API data layer and the cron scheduling automation layer.

3.4.1. API Data Layer

As previously mentioned, the entire user interface designed at the beginning of the project
included all of the scenarios where calls to the API layer were needed. So, when it came to
designing these API routes, the first step was organizing and naming the routes in a REST-
ful manner. REST, which stands for representational state transfer, defines an architectural
style with constraints and guidelines to follow when creating an HTTP interface for com-
munication between two parties. Therefore, a RESTful API applies the REST standards to
client server interactions within a web application. The main reason why a RESTful API
design pattern was chosen and followed was because of the strict separation between client
and server it provides. One way Parlay could expand in the future is with the development
of a mobile application. By creating a flexible and independent RESTful API layer for the
current project, a future mobile client will require minimal effort when connecting to and
utilizing the same API endpoints.

At a high-level, an API endpoint is made of an HTTP verb and resource noun that the
operation is to be performed on. The four main HTTP verbs are GET, POST, PUT, and,
DELETE. Routes using the GET verb retrieve resources for the client to read. The POST
route is used to create new resources, PUT is used to edit or update existing resources, and
DELETE is used to remove resources.

All data that is passed between the client and server was transferred as JSON. Each API

16

route defines the request body and parameters it expects from the client and also details the
structure of the response it will return. All inputs to the API layer are strictly checked to
ensure that all expected parameters exist and are of the proper data type. If any of these
validations fail, a 400 client error response is returned. Some routes are also protected with
the ‘Authorization’ header. Upon logging into the application, a client receives a temporary
JSON web token from the server. Any request, besides logging out, made by the client while
logged in requires that the unique token be provided to avoid receiving a 401 unauthorized
error response. This requirement allows the server to verify that the caller has been pre-
viously authenticated by the system. Also, by using an encrypted token that is unique for
each user, the system mitigates Cross Site Request Forgery (CSRF) vulnerabilities where a
malicious user attempts to impersonate another user when making an API call. Even if a
user’s id was exposed, actions still could not take place on his or her behalf because of the
JSON web token authorization check.

The Parlay API specification defines four main resource nouns that all routes are grouped
together by: user, league, game, and bet. A detailed API specification was created using
swagger.io and is discussed below.

There are eight API endpoints defined under the user resource, and they are shown in
Figure 11 below. The routes cover functionality for retrieving a user’s profile and registering
a new user account. Once registered, users may try to create a new session, verify their
email for account activation, and resend a verification email if they did not receive the first
verification email. Actions can also be taken in order to manage a user’s credentials. If users
forget their password, they have the ability to reset their login credentials for their account
by following a reset password link sent to their email address. Users credentials can also be
changed rather than reset using the PUT /user/credentials endpoint. For each of these user
API routes, the user account to be acted upon is identified via the ‘Authorization’ header
token. This token has the unique user identifier encrypted within it and can be securely
parsed and verified by the Node.js JSON web token passport module at any time.
League resources are the most dynamic resource used in Parlay and can be manipulated
by clients in many ways. These functions are displayed in Figure 12. There are two API
endpoints at the root level of the league resource. All leagues can be retrieved for the calling
user and leagues can also be created. When creating a league, a start date and end date
must be specified. There are limited options when choosing these values and the options
are retrieved via two separate routes. Next, all four primary HTTP actions can be taken
on a specific league. A league can be retrieved, reactivated (which creates a copy of the
league), edited, and deleted. Separate modification routes are also included for generating
a new random league access code and changing a league’s manager. The last four API end-
points available for a league relate to the members of a league. All members of a league
can be retrieved, new members can join a league before it starts, members can change their
team name, and members can be removed from a league before it starts by a league manager.

There is only one API endpoint used when working with game resources. Shown in Fig-
ure 13, this route gets a list of all games and filters that list based on the sports leagues
available for the provided leagueId and weekNum query parameters. The result is a set of

17

Figure 11. User API Endpoints

games to be displayed for a single week of a league.

The final major resource that makes up the Parlay web application is the bet resource
(Figure 14). The primary GET route for the bet resource is structured much like the league
retrieval route. A list of all bets is retrieved and filtered on leagueId and weekNum query
parameters passed in from the client. Similarly, a leagueId and weekNum can also be passed
to the bet retrieval route for a single user. This route fetches all bets placed by the calling
league participant in a single week. Lastly, bets are created using the POST /bet endpoint.

Each of these endpoints defined in the API specification also outline precise request and
response bodies and the property data types within them. An expanded view of the create
bet route is shown in Figure 15. There are no query parameters necessary for this route,
but the JSON structured request body is required. The request body holds a leagueId of
type UUID string that the caller is placing the bet for and the amount that the participant
is risking as a number. The expectedOdds and expectedMaxWin number properties are sent
to the server to ensure that the client and server are in sync with what those values are
expected to be. This protects users from a bet being placed for them that did not match up
with what they were being shown in the user interface. For example, if the user interface
was showing that a user would win $100, but when the server made the calculations, it only
calculated a win value of $90, then the bet would not be placed and an error would be shown
to the user. The final property that is required for placing a bet is the picks array. Each
pick contains a gameId string and information to specify which exact game prediction that
the pick corresponds to. There is no data sent back to the client in the response body for
this route. For any HTTP GET route, a response body will be outlined in a similar way to

18

Figure 12. League API Endpoints

describe the structure of the retrieved data.

3.4.2. Cron Scheduling Automation Layer

The Parlay web application relies heavily on the use of scheduled server events. These sched-
uled events are configured through the use of NPM package node-cron. Events afre scheduled
by defining a set of cron rules. A rule is made up of special characters and numbers to specify
the minutes, hours, days of month, months, and days of week that the event should trig-
ger. There are many rules defined for refreshing the game data at fixed times throughout
each day and week. As previously mentioned, 20 requests per day can be made to the 3rd
party SportspageFeeds API for free. For each weekday, the requests execute periodically at
the same times each day. However, on Saturday and Sunday, more requests are made to
refresh the NCAAF and NFL games, respectively. In a typical week, the large majority of

19

Figure 13. Game API Endpoint

Figure 14. Bet API Endpoints

NCAAF games take place on Saturday and the large majority of NFL games take place on
Sunday. So, on Sundays, in order to provide the best user experience, 16 requests are made
to refresh the NFL games and only four requests are made to refresh the NCAAF games.
The requests are also placed at strategic times during the day. Many NFL games start at
12:00 p.m. each Sunday, so requests are made to refresh the bookmaker odds leading up
to these games at 11:15 a.m., 11:30 a.m., and 11:45 a.m. This helps to prevent game odds
from becoming inaccurate due to unexpected events taking place before kickoff. Two such
events could include a key player being ruled out of a game, which hurts his team’s chances
to win or an inclement weather forecast, which makes it more likely that the total points
scored in the game will be lower. Refreshing the game data at times where many games have
likely completed is important too. This is because bets placed by users cannot be evaluated
until the system is aware of the final scores of the games involved in said bets. Users want
to see their bets processed in a timely manner, so they can see how they are stacking up
amongst their competitors. Reusing the example of many games starting at 12:00 p.m. on
Sundays, as games usually last roughly three hours from start to finish, a game refresh event
is scheduled for 3:30 p.m. This event is likely to capture many games that have completed
recently which allows for bets placed on these games to be updated relatively quickly.

Besides refreshing the bookmaker odds and game data, daily cron schedules are also used to
manage the state of all leagues and perform other bookkeeping operations. At 5:00 a.m. each
morning, the server executes a method to check for any new leagues that need to be changed
to an ‘Active’ league status. Every Tuesday at 5:00 a.m., all ‘Active’ leagues are advanced
to the next week. This process includes deducting any required currency that was not risked
from user balances, checking if the league should be marked as ‘Complete’, and updating
additional participant data fields in preparation for the new week. Upon completion of this
update each day, a log entry is written to the LeagueUpdateLog database table. Three calls
to this same operation follow the initial league update process to ensure that a log entry was
written to the database. If any subsequent call finds that the league update operation was

20

Figure 15. Create Bet API Endpoint

missed, it will run the operation and write to the log table. These subsequent calls act as
a safeguard to recover in the case where a league update scheduled event was missed. Each
morning at 6:00 a.m., health checks are run by the server to try and identify any bad data
that may exist within the database. A health check report is then emailed to the author
which includes identifiers of the out-of-sync data if any are found. An example of this daily
summary email is shown in Figure 16.

21

Figure 16. Daily Server Health Check Report

22

4. Implementation

4.1. Working with Timestamps

A large majority of the data used in the Parlay web application involves timestamps. Leagues
have start and end dates and are broken down into weekly time frames. Games have start
times and bets have creation dates. Games and bets are only to be shown within the proper
week in a league. In order for Parlay to be successful, the management of these various
timestamps needs to be organized and consistent. This is achieved with a 3rd party pack-
age called moment.js which is used in both the client-side Angular code and the server-side
Node.js code.

Moment.js is a package dedicated to simplifying timestamp management and display.[7]
Time formatted objects or strings can be passed into moment constructors by either using
the basic moment(<time>) syntax which processes the time input with the machine’s current
locale timezone or the UTC moment.utc(<time>) syntax which processes the time input as
a UTC formatted time. The time input is optional for both of these constructors. If no
time parameter is provided, the current time and date is used. In the Node.js server code,
the UTC constructor is always used. This is because all timestamps are stored as UTC
formatted strings in the database. It is important when comparing dates and making key
decisions, such as choosing which games should be returned to the client, that all timestamps
are in the same timezone or format. When working with the timestamps in the client code,
things become a little more challenging. UTC formatted moment objects are still primarily
used in the controller files, but the normal moment constructor is required in any of the
user-facing code. This allows all of the time-oriented data in the application to be displayed
dynamically based on which timezone the client is accessing the web page from.

Once moment objects are created, there are many convenient time-oriented methods avail-
able for use. Common moment operations used within Parlay include adding or subtracting
units of time to or from a moment object, comparing two moment objects to determine
which is first or last, figuring out which day of the week a moment object is on, formatting a
moment object into a human-readable string, and converting a moment object into a UTC
string. The code snippet shown in Figure 17 shows an example of the moment.js package
being used within the Create League component. This method takes in a JavaScript Date
object and returns a UTC formatted string representing a date that has been rounded down
to the previous Tuesday. This method is used when calculating a league’s duration. Leagues
can begin on Tuesday, Wednesday, Thursday, or Friday, but all leagues end on a Tuesday.
Therefore, when calculating a league’s duration it is useful to round the selected start date
down to the nearest Tuesday in order to evaluate the correct number of weeks in a league. In
this method, the date input is first used to instantiate a UTC formatted moment object. If
the input is on a Sunday or Monday, one week must be subtracted from the moment in order
for the startOf(‘week’) operation to place the moment object on the correct Sunday, two
days before the desired date. Two days and ten hours are then added to that result which
is then converted to a UTC formatted string to be returned.

23

Figure 17. Example of Moment.js Usage

Figure 18 shows an example of formatting a league’s start date in a component’s HTML file
and the resulting text shown on the user interface. This text is dynamically generated based
on the accessing client’s timezone. The moment.format() method takes a special string as
input that is used to specify how the date should be shown. The ‘MMMM’ tells moment to
include the full month name, the ‘D’ shows the date number without leading zeros for single
digit numbers, the ‘,’ is a literal comma, and the ‘YYYY’ maps to the full four digit year.
Moment.js contains an expansive list of formatting options beyond what is shown here.

Figure 18. Formatting a Date String Using Moment.js

4.2. Transmitting Real-Time Data

In order to prevent users from being able to gain a competitive advantage, it is important
that Parlay’s client interface is always displaying the most up-to-date game odds that are
available. Users shall be prevented from leaving a browser tab open for a long period of
time and holding on to the odds that were originally shown when the page loaded. This
would allow users to compare the previous odds with the current odds using a separate client
window and place their bets using the client showing the more advantageous odds. This un-
desirable scenario is prevented in two different ways. First, when a bet is placed in Parlay,
the expected odds and payout displayed in the client must match up with the corresponding
odds and payout stored in the database in order for the bet to be placed. However, this only
partially solves the issue at hand because this solution on its own could deliver a poor user
experience. A user could be creating their bet with the odds changing underneath them,
unknowingly. Then, when the user tries to place the bet, it would be invalid because the
odds have changed, and the only way to fix the issue would be to refresh the browser. This
leads to the second piece of the solution: transmission of real-time data between client and
server in order to keep the two parties in sync at all times, providing a user-friendly, secure

24

mechanism for placing bets. This real-time data transmission is made possible using a 3rd
party dependency called socket.io.

Socket.io is a JavaScript based library based on the WebSocket communication protocol.
It allows for bi-directional communication between web clients and servers.[8] Upon server
start, Parlay instantiates a socket.io object. Then, using an event-driven approach, the
socket.io instance subscribes and listens for new client connections and stores each active
connection using a JavaScript Set. The subscription code snippet is shown in Figure 19. As
each client socket connection is passed into the event callback, it is first added to the active
sockets Set object. Then, a ‘disconnect’ event is listened for on each socket. On socket
disconnection, the socket is removed from the Set of active connections.

Figure 19. Subscribing to Client WebSocket Connections

This Set of active socket connections is then used by the server to know which connections
events need to be emitted to. Every time a call to the 3rd party SportspageFeeds API
is made, any game that has been updated is immediately sent to client as a socket event
emission. This allows all clients to always stay in sync with the latest data that has been
collected by the Parlay server. A screenshot of the refreshGames method is shown in Figure
20. After the game data is retrieved, all active socket connections are iterated over and emit
a ‘data’ event containing all of the game objects that have been updated.

Figure 20. Emitting Socket Events to Client When Refreshing Game Data

From a client perspective, each client first must register themselves with the server to be
added to the server’s Set of active connections. After registering, a client must listen for
‘data’ events being emitted from the server. Upon execution of an event, the client can
notify any subscribers to the data of the updated games so the user interface can be updated
accordingly. This registration and event listening process in the client are captured in Figure

25

21.

Figure 21. Registering Client With Server Socket

To summarize, a typical scenario begins with the client calling the init method in Figure 21
and subscribing to the observable that is returned for any game updates. Inside of the init

method, a client socket instance registers itself with the server. This action fires a ‘connec-
tion’ event which enters the server event listener in Figure 19. At this point the connection
between the client and server is established. While this connection is active, if a scheduled
game refresh were to occur, calling the refreshGames method in Figure 20, a ‘data’ event
would be sent to the client. This would trigger the ‘data’ event listener shown in Figure 21,
thus receiving the refreshed game data in real-time. In doing so, the client is able to remain
in sync with the server and always display the most recent game data without making users
refresh their browsers.

4.3. Use of Object-Relational Mapping for Database Access

Object-relational mapping, or ORM, allows for database tables and entries to be accessed
and created efficiently from a programming language that is not geared toward databases.
For this project, Parlay’s Node.js server, written in JavaScript, needed to to work closely
with the MySQL database. Natively, there is no simple way to create and test database
queries in JavaScript. Also, writing out long, complex SQL queries as string literals is te-
dious and error-prone. Objection.js is a 3rd party ORM package that is used heavily in the
Parlay web server when accessing the database.

Objection.js is built upon a SQL query builder called knex and is designed and tested for
querying MySQL databases from Node.js programs. Objection.js allows developers to define
models to represent database tables and, optionally, the relationships between the models to
assist with the query implementation.[9] Figure 22 shows an example of defining a database
table model using objection.js. The only required property is the tableName property which
maps to the actual table name used in the database. An idColumn property is also defined
to inform the ORM tool of the table’s identifier column name.

Once a model class is defined, Objection.js provides numerous methods to use when needing
to interact with various database tables. The most common methods used in Parlay are se-
lect, join, where, insert, and patch. These methods all map to common SQL commands and

26

Figure 22. Database Bet Model Defined With Objection.js

are functionally equivalent to one another. The primary difference is that the Objection.js
method versions are much easier to use syntactically when coding in JavaScript. Figure 23
shows an example of generating a query involving the Pick and Game tables. The purpose of
this query is find all picks and their associated game information that have an ‘incomplete’
result. The query begins on the Pick table which is joined with the Game table on the
gameId keys. The columns desired from each table are specified as the parameters passed
into the select method. Lastly, only the table rows containing a result field of ‘incomplete’
are returned based on the where method. A resulting array of objects is then returned from
the query.

Figure 23. Example Select Query Using Objection.js

The insert and patch methods both work very similarly. The insert method requires that all
columns necessary to create a new table row are passed into the method via an object. The
patch method takes in one or more columns that need to be changed and is often combined
with a where method to specify which row(s) the change shall apply to. Figure 24 shows
the insertBet method used in Parlay to add a new bet entry to the database. All columns
except for the betId column are provided in the object parameter. The betId column is
auto-incremented and, therefore, does not need to be included.

4.4. Security

4.4.1. User Authentication and Authorization

One of the biggest areas in the Parlay web application where the application of proper secu-
rity principles was essential was user authentication and authorization. User authentication
is the process of verifying the identity of an individual making a request to the server. User
authorization controls what information authenticated users are able to access within the

27

Figure 24. Inserting a New Bet With Objection.js

system. The Parlay web server must be able to permit or restrict access to user information
in accordance with its security policy.

When a user attempts to login to the Parlay application, the user’s email and password
credentials are first authenticated. If the credentials are verified, Parlay creates a JSON web
token and sends it back to the client. Tokens are signed with a private server secret that is
also necessary to decrypt the token and reveal a user’s unique identifier (ID) stored within
it. Tokens are also assigned an expiration date of one week after they are issued. This forces
users to re-authenticate themselves once a week to prevent leaked tokens from being valid
for long periods of time in the hands of malicious users.

Once a token is issued to a client, the associated user gains access to the protected por-
tions of the Parlay server. In order to access any of the application’s API routes beyond
registration and logging in, a client must provide its authenticated JSON web token in the
‘Authorization’ header of its requests. This allows the Parlay web server to determine which
user is making the request and ensure that they have been authenticated. This authoriza-
tion process is implemented using a 3rd party package called passport. Passport is a flexible
middleware that can be used to validate a JSON web token passed along in the request
headers and parse the token’s payload. The code responsible for performing this operation
is shown in Figure 25. The method uses the JSON web token and server secret to return the
user ID payload in the callback function. The second parameter to the callback function is a
done callback function that is used to return any errors and the authorized user information
from the database. If the ID within the token payload does not map to a valid user in the
database, a 401 Unauthorized error response is returned to the client.

Outside of authorizing client requests as legitimate users, additional authorization checks are
also performed to ensure users are only accessing information that they are allowed to access.
For example, users can only access information about a league that they are a member of.
Thus, any API route that accesses league information first checks to make sure that the
calling user is an active member of the league. Similarly, some routes restrict access to only
league managers. Before deleting a league, the Parlay server ensures that the calling user is
the league manager of the league that has been targeted for deletion.

28

Figure 25. JSON Web Token Passport Middleware

4.4.2. Input Validation and SQL Injection Protection

On the client side, all inputs displayed on the user interface were driven by Angular Reactive
Forms. Angular Reactive Forms provides the ability to attach built-in or custom validators
on any form control.[10] Two commonly used built-in validators used in the Parlay web ap-
plication include a required validator which prevents inputs from being left empty and an
email validator that ensures a text input is in a valid email address format. Others include
validators for min or max length of an input or validating an input against a regular ex-
pression. Figure 26 shows how these validators are applied to the form controls on the user
registration form. The registration form also defines a custom validator for the password
input. Custom validators allow developers to define additional criteria that must be met in
order for a form control to be considered valid. In the case of this password input, passwords
must be at least six characters, cannot contain a space, only consist of alpha-numeric and a
set of special characters, and contain at least one alpha-numeric character and at least one
special character. These client-side input validators act as a strong first step in restricting
users to only entering safe and valid data.

Figure 26. Applying Validators to Angular Form Controls

It is also important to note that Angular provides additional client-side protections, natively,
when attempting to mitigate malicious input-based attacks such as a cross-site scripting

29

(XSS) attack. A XSS attack injects malicious JavaScript code into an application that is
then loaded and run on other client machines that access the application. By default, An-
gular applies DOM sanitization to any data variable that is injected into the DOM. This
provides baseline protection against XSS attacks as malicious script tags are escaped rather
than executed.

As HTTP requests are made to the server, it is important for the server to do its own
validation on the inputs attached to each request as well. Before performing any actions
with the data, each API route handler sends all inputs to a validationService that ensures
all required inputs are provided and are of the correct data type. If any mistakes are found
in the inputs, a 400 request error is returned to the client. Figure 27 shows the server
input validation performed on the body of a place bet request. The body must contain a
valid leagueId UUID, three valid number parameters (amount, expectedOdds, and expected-
MaxWin), and an array of valid pick objects. If all checks are passed, true is returned from
the method to indicate the body is valid.

Figure 27. Place Bet Request Body Validation

Lastly, security measures were taken into consideration when generating SQL queries from
within the Parlay web server to protect against SQL injection attacks. A SQL injection
attack inputs malicious data into the server with the intent of manipulating internal SQL
query generation to steal sensitive data from the database or alter the database. Figure 28
shows how these attacks are prevented in Parlay via parameterized queries. The ‘?’ parame-
ters within the raw SQL strings are placeholders for data variables to be inserted into. With
this syntax, the overall functionality of the generated SQL queries cannot change because
the input variables are treated as encapsulated string literals.

30

Figure 28. Defending Against SQL Injection Attacks

31

5. Testing

5.1. Unit Testing

As the code was written for the Parlay web application, a large amount of unit testing was
performed. The majority of the unit tests ran against the application components were
managed using a white-box testing strategy. White-box testing indicates that the underly-
ing structure of the code is known by the tester. Since the author both wrote the code and
performed the testing, this testing strategy was assumed.

One example of a unit test scenario executed during development was related to the user
story: “As a league participant, I want to place new bets using the spread, total, and mon-
eyline bookmaker odds for upcoming football games so that I can risk my currency to try
and gain more currency.” As a user selects predictions for a game, there are only certain
combinations of picks that should be considered valid. For example, a user can combine a
spread pick with a total pick but cannot combine a spread pick with a moneyline pick in the
same game. Figure 29 provides additional context on this matter.

Figure 29. Valid and Invalid Selected Picks

Table 2 breaks down each of the scenarios that were tested to verify that the implementa-
tion for this feature was correct. As white-box testing was used, all single selections and all
combinations of more than two selections could be skipped because the structure of the code
made those cases redundant, trivially.

5.2. Integration Testing

The goal of integration testing is to ensure that various modules of an application work
together in harmony. The first major phase of integration testing that took place in Par-
lay’s development life cycle was upon completion of the entire front-end user interface. The

32

Table 2. Pick Selection Test Case Breakdown

completion of the front-end Angular portion of the project was a development milestone and
provided a timely opportunity to test the interactions and data communication between var-
ious components using expansive mock data. Interactions between the components making
up a league’s life cycle were one area of the application tested thoroughly.

Initially, a mock league was created and placed in an ‘Upcoming’ state. While in an ‘Up-
coming’ state, a league’s start date and access code are displayed along with the league’s
members and settings. Test cases were executed to confirm that a league manager could gen-
erate a new league access code, change league settings, leave the league, delete the league,
and remove users from the league. This same page was also tested by viewing an ‘Upcoming’
league as a normal league member. A league member is only allowed to leave a league in this
state. Next, an ‘Active’ league state was tested. The same application route now displays all
of the upcoming game information, user betting information, and performance and ranking
information for all other members in the league. League functionality such as placing bets,
viewing bets, viewing league standings, and viewing previous week information were all val-
idated. The mock data was progressed to simulate weeks of time advancing which brought
the league to its final state, the ‘Completed’ state. The ‘Completed’ league state provides a
read-only summary of all league activity that took place over the course of the league. The
only action allowed is a reactivation of the league which can only be performed by the league

33

manager. Overall, these tests verified that the user interface components working together
to support a Parlay league were successfully integrated.

Additional integration testing was also performed during the development of the back-end
server. As API endpoints were implemented, the front-end mock data was gradually replaced
with actual data being retrieved and processed from the database. The integration of client
and server code allowed for entire user stories to be tested and validated.

5.3. Acceptance Testing

Acceptance testing is testing performed by end-users of a product with the objective of vali-
dating an application against its requirements.[11] After successful deployment of the Parlay
web application, user acceptance testing was conducted in the form of a three week pilot
league. The author along with seven others participated in the league. Before the league be-
gan, all seven users were informed of the project’s requirements, given a high-level functional
overview, and were asked to report any questionable behavior that they observed. There
were a handful of work items that came out of the inaugural Parlay league based on user
feedback and application performance, but, for the most part, the league was a great success.

Nearly every user’s initial reaction to the application was the question: “Can I use my
phone?”. At this point, there was some mobile screen size support, but many areas of the
site were not functional. After a second pass, all critical user functionality was made avail-
able for use from a mobile device. A couple of defects were identified early on in the pilot
league too. The first was a race condition when processing multiple bets for the same user
at the same time. All bets are processed asynchronously by the Node.js server. As multiple
bets were processing at the same time, a user’s current balance was inaccurate in some cases
due to one bet updating the balance after a separate bet had already retrieved the initial
balance. A code fix was inserted in the bet processing code to ensure that the retrieval and
updating of a user’s balance is an atomic operation. The second bug was regarding duplicate
bets being placed for users. After some investigation, it was found that multiple rapid clicks
of the Place Bet button was making multiple API POST requests to place the bet. This issue
was fixed by disabling the Place Bet button immediately when clicked and only re-enabling
it when the API call returned.

34

6. Deployment and Future Enhancements

6.1. Deployment

The first step to the deployment process was setting up an AWS EC2 server instance. AWS
offers a wide range of instance types varying in memory and performance. For this project,
an Amazon Linux 2 free-tier t2.micro instance was used to host the application.

Once the instance was successfully launched, a web server needed to be installed and config-
ured. Nginx, a popular open-source software used to serve web content in an event-driven
approach, was chosen as the web server for Parlay. Nginx was configured to listen for all
web traffic communicating with the EC2 server instance on ports 80 and 443. Any incoming
traffic via port 80 is redirected to port 443. Port 443 uses a secure network channel that
encrypts all data passed between client and server using the Transport Layer Security (TLS)
network protocol. In order to take advantage of this additional security layer, a TLS certifi-
cate needed to be signed and acquired from a trusted Certificate Authority (CA). Parlay’s
signed certificate from CA, Let’s Encrypt, contains its domain name, parlayleagues.com, and
its public key. The TLS certificate allows any client visiting Parlay’s domain to establish a
trusted, secure connection with the Parlay server. Once the network traffic is routed to the
correct port, it is then routed to Parlay’s active Node.js server via a reverse proxy. Parlay’s
Node.js server runs on the EC2 instance localhost port 3000 and is managed using a 3rd party
process manager tool called PM2. PM2 allows Node.js processes to be efficiently run in a
production environment with features such as automatic load balancing and log management.

Once the application was deployed and available via the EC2 instance IP address, the par-
layleagues.com domain name was then purchased and associated with the instance. The do-
main and a domain email address were purchased from domain name registrar Namecheap.
In order for the domain to be associated with the AWS EC2 server instance, an elastic IP
address needed to be generated. Normally when a server instance stops or restarts, a new
IP address is assigned to the instance. This behavior is not acceptable when attempting
to map a single IP address to a domain name. An elastic IP address is a reserved public
IP address that remains constant throughout any of the aforementioned instance life cy-
cle events. Using Namecheap’s advanced DNS tab, an “A Record” containing the instance
elastic IP address as a value and a “CNAME” record containing the instance public DNS
as a value were associated with the domain. These two DNS records completed the asso-
ciation between the domain name and server. Additional DNS records were also added to
the parlayleagues.com domain for trusted email generation via sendgrid.com, TLS certificate
verification, and registration with the Google search engine.

6.2. Future Enhancements

Since deployment on August 1, 2021, Parlay has gained 66 total users and has successfully
processed more than 4,000 bets. Parlay has a variety of future enhancements planned to
improve usability and progressively expand its user base. Most importantly, a mobile appli-
cation will be created for both iOS and Android app stores. A large majority of Parlay’s

35

active users access the Parlay web application with their mobile device browsers despite the
limited functionality this provides. The creation of a mobile app is essential in order to offer
Parlay’s full suite of functionality on mobile devices and reach a broader set of users. The
next most important enhancement is allowing users to interact with one another. Currently,
users are fairly isolated from one another. Users can visually see how other users are per-
forming but there are no means of interaction between them. User interaction in Parlay will
eventually come in multiple forms including adding friends via friend requests, supporting
direct user-to-user league invites, and enabling league chat rooms. A third enhancement is to
give league managers more control over their leagues. While a league is active, league man-
agers should be able to change league settings and possibly even adjust member balances.
Lastly, a wider set of league offerings needs to be available year-round. Parlay only supports
private betting leagues for the NFL and NCAAF sports leagues which only take place from
September through February. Methods of expansion include public league availability and
additional sports league support for sports such as basketball, baseball, and hockey.

36

7. Bibliography

[1] “National Football League Total Attendance at Regular Season Games 2008 to
2020.” Statista, 14 Jan. 2021, https://www.statista.com/statistics/193420/

regular-season-attendance-in-the-nfl-since-2006/.

[2] “Football Will Draw More than $20 Billion in Bets; $1.5 Billion in Revenue.” Play USA,
9 Sept. 2021, https://www.playusa.com/2021-football-betting-projection/.

[3] Winters, Ken C. and Jeffrey L. Derevensky. “A Review of Sports Wagering: Prevalence,
Characteristics of Sports Bettors, and Association with Problem Gambling.” Journal of
Gambling Issues 43 (2019): 102-107.

[4] “The Psychology of Sports Betting.” Kindbridge Health, 30 Sept. 2021, https://

kindbridge.com/gambling/the-psychology-of-sports-betting/.

[5] Kumar, Kuldeep and Sandeep Kumar. “A rule-based recommendation system for selec-
tion of software development life cycle models.” ACM SIGSOFT Softw. Eng. Notes 38
(2013): 1-6.

[6] Pattinson, Tamara. “Relational vs Non-Relational Databases.” Pluralsight,
19 Oct. 2021, https://www.pluralsight.com/blog/software-development/

relational-vs-non-relational-databases.

[7] “Moment.js Documentation.” Moment.js, https://momentjs.com/docs/.

[8] “Socket.io Documentation.” Socket.io, https://socket.io/docs/v4/.

[9] Koskimäki, Sami. “Objection.js: A SQL-friendly ORM for Node.js.” Objection.js, https:
//vincit.github.io/objection.js/.

[10] “Validating form input.” Angular.io, https://angular.io/guide/form-validation.

[11] Davis, Fred D. and V. Venkatesh. “Toward preprototype user acceptance testing of new
information systems: implications for software project management.” IEEE Transactions
on Engineering Management 51 (2004): 31-46.

37

https://www.statista.com/statistics/193420/regular-season-attendance-in-the-nfl-since-2006/
https://www.statista.com/statistics/193420/regular-season-attendance-in-the-nfl-since-2006/
https://www.playusa.com/2021-football-betting-projection/
https://kindbridge.com/gambling/the-psychology-of-sports-betting/
https://kindbridge.com/gambling/the-psychology-of-sports-betting/
https://www.pluralsight.com/blog/software-development/relational-vs-non-relational-databases
https://www.pluralsight.com/blog/software-development/relational-vs-non-relational-databases
https://momentjs.com/docs/
https://socket.io/docs/v4/
https://vincit.github.io/objection.js/
https://vincit.github.io/objection.js/
https://angular.io/guide/form-validation

8. Appendices

Figure 30. Landing Page

Figure 31. Create League Page

38

Figure 32. Upcoming League Home Page

Figure 33. Place Bet Modal

39

Figure 34. Week Overview Tab

Figure 35. League Standings Page

40

	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	Glossary
	Introduction
	Requirements
	Overview
	Life Cycle Model
	Functional Requirements
	Non-Functional Requirements

	Design
	Architecture Overview
	Client Design
	User Interface Design
	Web-page Design

	Database Design
	Server Design
	API Data Layer
	Cron Scheduling Automation Layer

	Implementation
	Working with Timestamps
	Transmitting Real-Time Data
	Use of Object-Relational Mapping for Database Access
	Security
	User Authentication and Authorization
	Input Validation and SQL Injection Protection

	Testing
	Unit Testing
	Integration Testing
	Acceptance Testing

	Deployment and Future Enhancements
	Deployment
	Future Enhancements

	Bibliography
	Appendices

