
Audio Canvas: An Audio Visualization Tool

A Manuscript

Submitted to

the Department of Computer Science

and the Faculty of the

University of Wisconsin–La Crosse

La Crosse, Wisconsin

by

Christian Strauss

in Partial Fulfillment of the

Requirements for the Degree of

Master of Software Engineering

May, 2022

Audio Canvas: An Audio Visualization Tool

By Christian Strauss

We recommend acceptance of this manuscript in partial fulfillment of this candidate’s re-
quirements for the degree of Master of Software Engineering in Computer Science. The
candidate has completed the oral examination requirement of the capstone project for the
degree.

Dr. Kenny Hunt, PhD Date
Examination Committee Chairperson

Dr. William Petullo, PhD Date
Examination Committee Member

Dr. Allison Sauppé, PhD Date
Examination Committee Member

Abstract

Strauss, Christian, “Audio Canvas: An Audio Visualization Tool,” Master of Software
Engineering, May 2022, (Kenny Hunt, Ph.D.).

This manuscript describes the development of web based audio visualization tool called
“Audio Canvas.” Audio visualizers are created by having some form of audio data animate a
visual object. Audio Canvas is designed to manage, edit, and share these audio visualization
projects.

i

Acknowledgements

I would like to express my appreciation to my project advisor Dr. Kenny Hunt for his
time, guidance, and support during the length of this project. I would also like thank the
Department of Computer Science at the University of Wisconsin–La Crosse for providing
the knowledge and experience needed to complete this project. I would lastly like to thank
my wife and family for providing me with support and patience during my studies.

ii

Table of Contents

Abstract . i
Acknowledgments . ii
List of Figures . v
List of Tables . vi
Glossary . vii
1. Introduction . 1

1.1. Overview . 1
1.2. Background . 2
1.3. Goals . 2

2. Software Development Process . 3
2.1. Overview . 3
2.2. Life Cycle Model Analysis . 3

2.2.1. Waterfall Model . 3
2.2.2. Prototyping Model . 3
2.2.3. Spiral Model . 4
2.2.4. Scrum Model . 4

2.3. Overview of the Development Process 5
3. Design . 11

3.1. Overview . 11
3.2. UML Class Diagram . 11
3.3. Application Interface . 14
3.4. Database . 15
3.5. User Interface Mockups . 16
3.6. Final User Interface . 18

4. Implementation . 21
4.1. Technologies Used . 21

4.1.1. Client . 21
4.1.2. Server . 22
4.1.3. Database . 25

4.2. Development . 26
4.2.1. Data Management System 26
4.2.2. Application . 26

5. Testing . 30
5.1. Overview . 30
5.2. Verification . 30
5.3. Validation . 30

6. Security . 32
6.1. Overview . 32
6.2. Authentication and Authorization . 32
6.3. Web Security . 33

7. Deployment . 34
7.1. Overview . 34

iii

7.2. Mobile Application . 34
8. Conclusion . 35

8.1. Overview . 35
8.2. Challenges . 35
8.3. Learning Experience . 35
8.4. Future Work . 35

9. Bibliography . 37
10. Appendices . 38

10.1. Appendix A: Project Requirements 38
10.2. Appendix B: API Service Details . 46
10.3. Appendix C: Graphical User Interface 55

iv

List of Figures

1 Audio Visualizations . 1
2 Kanban Board . 8
3 UML Class Diagram . 12
4 UML Class Diagram Continued . 13
5 UML Interface Diagram . 15
6 ER Diagram . 16
7 User Interface UI Mockup . 17
8 Project Management UI Mockup . 18
9 User Interface UI Mockup . 19
10 Project Management UI Mockup . 20
11 Using JSX to Manage Menus and Editors . 21
12 Using the Web Audio API to Extract Frequency and Time Domain Audio Data 22
13 Using the BabylonJS Engine to Initialize the Scene 22
14 Project Service Registration . 24
15 Project Service Hooks . 25
16 Geometric Primitives . 27
17 Box Primitive Input Structure . 27
18 Audio Mapping . 28
19 Root Mean Square Calculation (RMS) . 28
20 Grouping and Time Animations . 29
21 Time in LFO Calculation . 29
22 Authorization - Accessing Resources . 32
23 Server API Access Controls . 33
24 Home Page . 55
25 Discover Page . 55
26 Register Page . 56
27 Login Page . 56
28 My Projects Page . 57
29 Collaborative Projects Page . 57
30 Application Page - Components . 58
31 Application Page - Audio Mapping . 59
32 Application Page - Shared Settings and Time Mapping 60

v

List of Tables

1 Project Management Requirements . 7
2 Sprint Retrospective Example . 10
3 Projects Service Example . 23
4 Box Height Test Cases Example . 31
5 Authentication Requirements . 38
6 Project Management Requirements . 39
7 Admin Requirements . 40
8 Audio Input Requirements . 41
9 Layer Requirements . 42
10 Component Requirements . 43
11 Special Input Requirements . 44
12 Scene Requirements . 45
13 Mapping Requirements . 45
14 Export Requirements . 46
15 Authentication Service . 46
16 Users Service . 48
17 Projects Service . 50
18 Project Data Service . 52
19 Project Access Service . 54

vi

Glossary

Amazon Web Services (AWS)

AWS is a cloud service provider that offers various on-demand cloud computing platforms.

BabylonJS

BabylonJS is a web 3D graphics engine that uses JavaScript to display graphics on HTML
canvas elements.

FCurve

a FCurve is a function or curve that is used to define the animation of an object. This
is done by setting points along a graph.

FeathersJS

FeathersJS is a backend web framework for NodeJS used to develop REST APIs.

Frames Per Second (FPS)

FPS is a computer graphics performance metric that captures the frequency at which
images are displayed.

Frequency Spectrum

The frequency spectrum is audio data pertaining to the distribution of amplitudes over
each frequency component (20hz-20kHz).

Heroku

Heroku is a platform cloud service provider that enables people to build and run appli-
cations in the cloud.

LaTeX

LaTeX is a document markup language and document preparation systems for the TeX
typesetting program.

MediaRecorder

The MediaRecorder interface is a part of the web MediaStream Recording API that is
used to record videos on the web.

Mesh Object

A Mesh Object is a 3D shape represented as a set of vertices and triangles.

vii

MongoDB

MongoDB is a document-based NoSQL database system, capable of data persistence.

MongoDB Atlas

MongoDB Atlas is a cloud based database web service that fully manages the deployment,
scaling, and maintenance of a MongoDB instance.

Netlify

Netlify is a cloud service provider that offers hosting of static web sites and serverless
functions.

NodeJS

NodeJS is a backend JavaScript engine, capable of running JavaScript code outside of a
browser.

OAuth

OAuth is a standardized authorization protocol used on the web for applications to grant
access to information.

ReactJS

ReactJS is a frontend JavaScript library, capable of building modular, component-based
user interfaces.

React Native

React Native is framework that utilizes ReactJS to build mobile applications on both
Android and IOS in a single codebase.

REST API

A REST API is an application programming interface that conforms to the representa-
tional state transfer architectural style.

WebGL

WebGL is a web graphics API that enables JavaScript to run instructions on graphic
processing hardware.

WebView

WebView is a React Native component used to display web pages inside mobile applica-
tions.

viii

1. Introduction

1.1. Overview

This project aims to create a software system that enables users to produce, manage,
share, and export graphical visualizations of audio streams. Audio visualizations are com-
puter generated animated graphics that are rendered in a way that synchronizes to audio.
These visualizations can range from simple animated graphs to complex morphing objects
that move over time. These visualizations are rendered in real time by taking a live audio
source as an input and applying a set of user-generated rendering rules to produce a dynamic
image that is affected by characteristics of the audio stream. Hence, the graphics can look
drastically different depending on the audio fed into it. Applications of such visualizations
include music videos, livestreams, podcasts, advertisements, and other forms of visual me-
dia. Figure 1 shows four examples of audio visualizations that demonstrate the variety of
renderings available.

The visualizer supports rendering 2D and 3D geometric shapes, text, images, and pat-
terns. Each graphical component has geometric characteristics that determine the position,
rotation, and scale in either 2D or 3D space. Each component also has properties that affect
the texture or material of the object. Users are thus able to control the color and texture
of the animated visuals. Static characteristics are set to a constant value and remain fixed
throughout the audio feed. Dynamic characteristics change with respect to the selected audio
source or, alternatively, be programmatically changed over time.

The audio source can be an audio file or a microphone input. The audio stream’s volume,
frequency, and time domain signature can be connected to any of the various graphical
properties that determine visualized rendering. These characteristics drive how the visualizer
looks by changing a visual characteristic of the image. For example, we can extract the
volume of an audio input and use it to determine the size of a visual component at a specific
point in time.

(a) 2D Elements (b) Mesh

(c) Objects (d) Image and Text

Figure 1. Audio Visualizations

1

1.2. Background

A number of professional motion-effects software packages support the creating and man-
agement of audio-visual animations. Motion, Blender, and Adobe After Effects allow a user
to create a multitude of different types of computer graphics including film making, 3D mod-
els, virtual reality, video games, and other use cases. In these tools, users are able to create
mesh objects that are then animated through the use of FCurves. FCurves enable a user to
map audio data to a particular mesh object property. FCurves accomplish this by specifying
keyframes and interpolating the values between those keyframes over time. An audio stream
can be baked to these FCurves to animate a property with respect to the audio stream
provided [4]. Professional motion-effects software packages are computer resource intensive
programs due to the way they render animations. Configuring audio-visuals in these tools
can also be technical and require some expertise.

For users that do not have the computer resources or expertise necessary to make audio-
visuals in professional motion effects software, applications such as Renderforest, Specterr,
and STAELLA exist. These applications reduce the complexity of managing meshes and
FCurves by providing preset animation routines. These presets already contain all the visual
components and audio mappings necessary to create an audio visualizer. All the user needs
to do is choose a preset visualizer and provide the audio source. These applications enable
users to create audio-visuals for their content quickly and easily.

Professional motion-effects software packages have a steep learning curve, require hard-
ware that is capable of extensive graphical processing, and are time consuming to use. Preset
animation applications are easier to use and requires less capable hardware support but fails
to provide the customizability that many users want. This project aims to strike a balance
between these different methods of creating audio visualizations.

1.3. Goals

This software system is designed with simplicity in mind. An intuitive user interface
should allow a user without expertise to create an image with motion-effects tied to music
and/or speech.

This software system is also designed with portability in mind. This means making the
system available on a wide range of computer devices. This system will allow a user to create
an audio-visual project on one machine, save it, and pick up where they left off on another
machine.

It is also important to note this software system is also designed with emphasis on
collaboration and community building. This system will allow a user to connect with other
users and groups, inspire one another, and create new audio-visuals. When starting a new
creative project, learning from the examples of others can help from a creativity and technical
perspective. This system will not only be capable of creating audio visualizations, but contain
project management infrastructure needed to browse, share, view, and edit projects created
in the system. A user will be able to share a project with a different user and allow that
other user to work on the same project.

2

2. Software Development Process

2.1. Overview

I first decided to choose an appropriate software development life cycle model for project
development. Software development life cycle models describe a series of phases of activities
performed to construct a software system [6]. Each software development model has distinct
characteristics that may or may not be suitable for a particular product. Several software
development life cycle models were considered for this project. This section discusses these
considerations and the decision to adopt a modified Scrum Model for this project.

2.2. Life Cycle Model Analysis

2.2.1. Waterfall Model

The Waterfall Model is a software development life cycle model that defines a straight
sequence of activities [6]. Each phase must be complete before moving on to the next phase
as subsequent phases are dependant on prior phases. This model starts with a requirement
gathering phase where product requirements are captured. Once all requirements are cap-
tured and understood, the system is designed to meet those requirements. Once the design
is fully understood, the system is then implemented. Once the system is fully implemented,
it is tested. When testing is complete, the system is deployed and maintained.

The Waterfall Model was considered for use in this project but was not chosen due to
its strict unidirectional flow through its phases. At project inception, I was unclear on
various technical issues related to graphical rendering and these issues might cause me to
rethink certain features. I was also unclear on the graphical performance I could expect
from the various devices I was targeting for deployment. For instance, would the browser be
capable of rendering graphics while simultaneously processing audio data? If so, what are
the performance capabilities of such actions, and how will different hardware handle this?
Since a proper architectural design depended to some degree on how these questions were to
be answered, I required a more dynamic approach to software development.

2.2.2. Prototyping Model

The Prototyping Model is a software development life cycle model that uses the devel-
opment of prototypes to better acquire and validate requirements [6]. This model is useful
when product requirements are not fully known or understood. This model begins with an
initial product requirement gathering phase, but does not require the product requirements
to be fully understood at this point. Once that initial set of product requirements are known,
the product is broken down into subsystems.

Prototypes are then built for each piece and evaluated by the customer. This process of
prototype development followed by customer evaluation is repeated throughout the project
until the customer is fully satisfied with all partial prototypes. This gives the customer
the opportunity to further refine product requirements. Once the customer is satisfied, the
product requirements are now fully known. The different prototypes are then integrated into
the final product where it can be tested, deployed, and maintained.

3

The Prototyping Model was also considered for this project but was not chosen due to its
customer evaluation and acceptance steps. The prototyping process would have been bene-
ficial for this project to uncover some of the previously stated unknowns and fully capture
project requirements. However, the customer evaluation step of this model is unhelpful for
this project since the customer and developer are the same person. This model also requires
customer acceptance before product integration begins. This could potentially introduce
scope creep and extend product development. As the customer of the product, it would be
difficult to determine at what point the prototypes are sufficient to progress. If for whatever
reason I was not fully satisfied with a particular prototype, I could spend more time on its
details rather then higher priority items. I could of recruited customers for testing purposes
to make this model work, but opted for the Scrum model as it seemed to be a better project
fit.

2.2.3. Spiral Model

The Spiral Model is a software development life cycle model that is known for its unique
risk management feature [6]. This model incrementally builds product features in iterations
known as spirals. Each spiral consists of four steps: identify objectives, risk analysis, de-
velopment, and evaluation. When identifying objectives, precisely what is to be developed
during the iteration is identified and understood. After the objectives have been identified,
an in-depth risk analysis is performed on them. Risk analysis involves finding the potential
risks of adding the objectives to the software system and mitigating them appropriately.
This process includes the development of prototypes to better understand what risks exist
and troubleshoot solutions. After risk analysis is complete, the objectives are developed
and tested. Finally, the objectives are evaluated by the customer. This step gives the cus-
tomer the chance to refine product requirements. The Spiral Model is very thorough in
its approach to software engineering. This effort comes at a large cost in time. The risk
assessment featured in the model is suitable for large scale, risk averse applications.

The Spiral Model was also considered for this project but was not chosen due to its cost.
This risk analysis would have been beneficial for this project to determine and mitigate
some risks of adding product features. For instance, an in depth analysis of how adding a
particular feature would affect the overall performance of rendering process could of been
helpful. However, this risk analysis can be unpredictable in regards to time estimation.
Time management is important for this project to meet the project deadline. This project,
being smaller in scale, can take on a little more risk building product features to improve
throughput. The evaluation step of the spiral offers a check point with the customer to
ensure the product is being developed appropriately. This step is not appropriate for this
project as well due to what was discussed in the Prototyping Model consideration.

2.2.4. Scrum Model

The Scrum Model is a software development life cycle model that uses an agile approach
for developing innovative products. The efforts are divided into three different roles: product
owner, scrum master, and development team. The product owner is responsible for what
is developed and in what order. The scrum master is responsible for guiding the team in

4

following the scrum model. The development team is responsible for designing, building,
and testing the product [9].

The Scrum Model defines several activities and artifacts. An initial set of project re-
quirements are gathered and added to a product backlog. The product is then built in
iterations known as sprints. Each sprint begins with sprint planning. During planning, a
set of tasks are moved from the product backlog to the sprint backlog. The sprint is then
executed. The sprint backlog tasks are designed, built, and tested at this time. Each day, a
stand-up meeting takes place to help organize the team and provide status updates. At the
end of the sprint, a sprint review with the customer takes place to evaluate what happened
during the sprint. This offers a time for the customer to voice opinions about the work
completed and future enhancements. It is ultimately up to the product owner to decide
whether these opinions make it into the product requirements and their urgency. It is also
up to the product owner to decided if the complete sprint work is releasable as is. This is
an important distinction to that of Prototyping and the Spiral Model. The customer can
not directly impact the release of increments. They can only influence future work and voice
concerns. A sprint retrospective also takes place to evaluate what is going well and what
needs improvement from a process standpoint. At the end of the sprint, the work completed
is released as an increment. The last process of a sprint is product backlog grooming. This
is where tasks are added, removed, and prioritized for upcoming sprints. These iterations
are completed throughout the life of the product’s development.

A modified Scrum Model was used for this project due to its incremental dynamic nature.
This project required flexibility in regards to product requirements. The sprint review ad-
dressed this need by offering a time to revise those requirements. This model’s incremental
approach does this without sacrificing the ability to progressively release completed function-
ality. This project also required a model that was punctual in regards to time management.
The ability to pull more or less tasks into each sprint proved to be necessary to complete
the project in its given time frame. I have some prior experience with Agile software devel-
opment which also played a role in the decision to follow this model. Dr. Kenny Hunt, the
project advisor, played the role of ScrumMaster by ensuring scrum processes and artifacts
were followed. I played the roles of the product owner, ScrumMaster, and developer. As
such, minor adjustments to this model took place to accommodate this. For instance, there
were no formal daily-standup meetings. The point of these meetings is to ensure the team
is all on the same page with regards to the sprint work at hand. My project advisor and I
also assumed the role of the customer for this project. As such, the sprint review served as
a time to reflect on completed work and determine if it was fully capturing the goals for this
project.

2.3. Overview of the Development Process

As the product owner, I gathered the initial set of product requirements. These require-
ments met my initial vision for the product and were captured as user stories. User stories
are informal descriptions of requirements written from the perspective of the end user. Each
of these user stories was also associated with a list of acceptance criteria along with an index
to support traceability. These user stories served as a good starting place to help better
understand what this software system was trying to achieve. Table 1 shows an example

5

of how project management requirements were captured. A complete listing of all project
requirements can be found in Appendix A.

Index 2.1 — Create Project

User Story
As a user, I would like to be able to create a project, so I can save my
visualizer for future reference.

Acceptance Criteria
User provides project information – project is created
User provides illegitimate information – Error message

Notes: Project information - (name, visibility – public or private)

Index 2.2 — Open Project

User Story
As a user, I would like to be able to open a project, so I can view the
visualizer.

Acceptance Criteria User clicks open – project is opened

Index 2.3 — Edit Project

User Story
As a user, I would like to be able to edit a project, so I can change the
name or visibility.

Acceptance Criteria User edits project name or visibility – project is updated

Index 2.4 — Delete Project

User Story
As a user, I would like to be able to delete a project, so I can remove it
from my list.

Acceptance Criteria User clicks delete – project is deleted

Index 2.5 — Share Project

User Story
As a user, I would like to share my project with another user, so we can
collaborate on the same project or enable the other user to view a private
project.

6

Acceptance Criteria

User can enter in another user’s email address to share
“User not found” error message if user with email does not exist
User can specify if other user has read or write privileges to the project
Other user can view the project if they have read privileges.
Other user can edit the project if they have write privileges.

Notes: Project information - (name, visibility – public or private)

Table 1. Project Management Requirements

One of the key requirements of this system is the ability to manage audio-visual projects.
As a result, a user needs to be able to create, view, edit, and delete projects. This system
must also support collaboration, such that users must be able to share an audio-visual with
one another. Also, a user needs to be able to determine whether the project is visible to all
users or if only specified users can access it.

In order to make an audio-visual, the audio sources must be specified. The system
therefore needs to enable users to manage their audio sources by creating, viewing, editing,
and deleting audio inputs. The system needs to support both audio files and microphones
as audio inputs. For audio file inputs, the system needs to support basic audio controls:
play/pause and seek functionality.

The system needs to support creating and customizing graphs that map to data points
collected from an audio input. The system needs to be able to create and customize a line
chart: typically used for time domain waveform information. The system also needs to be
able to create and customize a bar chart: typically used to illustrate the frequency spectrum.

The system needs to support maintaining mesh objects: cube, sphere, polyhedron, etc.
As a result, a user needs to be able to create, edit, and delete these mesh objects. These
mesh object primitives need to be able to be customized with relevant properties: width,
height, material, etc. These properties also need to be able to be manipulated by audio data.
These primitives need to be able to be grouped together to make increasingly more complex
objects. These objects also need to be able to perform basic geometric transforms: position,
rotation, and scale.

Any sort of video media would not be complete without images and text. The system
needs to support adding and removing images and text from the visual.

It makes sense to be able to export the visual to a video. The system needs to support
the ability to record the visual and export it to a file.

The product backlog is an emergent, ordered list of what is needed to improve the product
[10]. This list was populated prior to the initial sprint with the initial product requirements.
As the project was developed, new requirements were added to the project backlog. This
occurred at the end of each sprint during product backlog grooming. This entailed adding,
removing, and reordering tasks in order of priority. As the product owner, I determined
the priority of each task. Emergent, critical product features were given higher priority.
For example, tasks that involved in the management of users and projects were completed
first. Then priority shifted towards creating the interface responsible for generating audio
visualizations. More details on how the project work was prioritized will be discussed in

7

Section 4.
Project work was developed in iterations known as sprints. There were eighteen sprints

in total to complete this project. Each sprint lasted two weeks with one exception. Sprint
fourteen landed on J-Term and lasted a month. Sprints began with sprint planning and
ended with a review and retrospective.

Sprint planning lays out the work to be performed for the upcoming sprint by assigning
a set of tasks to the spring backlog [10]. As the development team, I needed to determine
what tasks to pull. For this, I had to set a goal for the sprint based on the priority of the
product backlog. For example, a goal of sprint ten was to add basic geometric shapes to the
visualizer, and relevant tasks were selected to achieve this goal.

All project work was documented using a project management application known as
ClickUp. I used the Kanban Board feature in ClickUp to manage the product and sprint-level
backlogs. A Kanban Board is an agile project management tool designed to help visualize
work [1]. Kanban Boards are made up of columns that indicate a status. Each backlog
item is displayed on the board and has a status that determines what column contains that
item. As shown in Figure 2, our Kanban board had five statuses: BACKLOG, TODO,
IN PROGRESS, TESTING, and DONE. The BACKLOG column contained the prioritized
product backlog. During sprint planning, the sprint backlog was pulled into the TODO
column. As tasks were worked on, they were pulled into the IN PROGRESS column. When
tasks were completed and ready for testing, they were pulled into the TESTING column.
At this point, tasks were tested and evaluated. Once satisfied, the task was pulled into the
DONE column. For documentation purposes, each task was assigned a label denoting what
sprint they were completed in. Tasks only moved from left to right on this board, with
the exception of the IN PROGRESS and TESTING columns. If testing failed, tasks were
allowed to move back into the IN PROGRESS column. If new features or bug fixes were
added to future sprints, tasks were created and added to the BACKLOG.

Figure 2. Kanban Board

8

At the end of each sprint, a review took place to evaluate the work completed during the
sprint, collect feedback, and prioritize tasks. The scrum team and any internal or external
stakeholders typically participates in the sprint review. For this project, my project advisor
and I participated in the sprint reviews. The retrospective offered valuable time to reflect
on what was working well and what needed improvement. All reviews and retrospectives
were documented and saved for future reference. Table 2 shows an example sprint review
and retrospective from sprint four.

Sprint 4 Review and Retrospective

What
Happened?

Basic functionality of the “My Projects” page was completed. A basic
user can view their projects, create, edit, and delete. A basic user is also
able to duplicate a project. They are also able to launch any project in
the main app. There was also a button added to share a project which
will be implemented in a future sprint.

Discovered a new feature in ClickUp application (used to track sprint
progress) for tagging sprint tasks. Each sprint task as they are pulled
into a sprint will be tagged with that sprint ex) sprint1. This way we
can track which items came through in each sprint.

What went well?

My projects page functionality came together well.

ClickUp tagging will be useful for tracking which tasks were completed
in each sprint.

What needs
improvement?

Sprint task naming needs to be more descriptive (thinking about keeping
the title the same to fit on the board but adding a more descriptive
description when someone opens the task).

Action Items

Main app menu GUI (left hand panel)

Audio input module

Audio input controller

Audio input type setting in application settings

Notes
Paginate user management / bootstrap container

User management is active should be checkbox

9

Table 2. Sprint Retrospective Example

During the sprint review, the work completed during the sprint was evaluated. Any
work completed was released as an increment if it met the definition of done. The definition
of done is a checklist of work that the team is expected to complete before work can be
marked as releasable [9]. This list ensures the requirements pass all the necessary quality and
completeness expectations. Code quality, acceptance criteria, and traditional nonfunctional
requirements are expressed in this definition. The sprint review also offered time to make
changes product requirements. During review, it was not uncommon to hear the phrase
“it would be cool if ...” and for that cool new feature to be added to the backlog. For
example, multiple audio inputs were not a part of the original functional requirements for
this project. During one of the reviews, it was brought up that it would be a good idea to
be able to specify multiple inputs and map them to different visual objects. This would be
useful for podcasts when you want a different visual for each person talking. Making changes
to functional requirements like this would not have been as easily supported through the use
of other software development models. The sprint review also served as a checkpoint on
where the project was at in its entirety. This meant reviewing the progress and timeline of
the project as well as revising and prioritizing the product backlog.

Sprint retrospectives provided a time to reflect on the development process and allow for
changes to improve quality and effectiveness [10]. This meant asking questions like - What
went well in the sprint? What could be improved? What are some action items for future
sprints? It is the responsibility of the scrum master to encourage these discussion points and
ensure actions are taken to improve upon what is discussed. For example, In Table 2 the
sprint task naming was something to be improved upon in future sprints.

10

3. Design

3.1. Overview

This section describes the application design. The goal of this effort was to take applica-
tion requirements and transform them into appropriate data structures, modules, interfaces,
and relationships to achieve those requirements. This section describes the UML Class Dia-
grams, UML Interface Diagrams, Database Entity-Relationship Diagrams, and User Interface
Mockups that were used to achieve this goal.

3.2. UML Class Diagram

The UML class diagrams shown in Figures 3 and 4 describe the structure of the system
by modeling object-oriented classes and their relationships with one another. The most
important classes in this system are Users and Projects. This subsection discusses these two
classes in more detail.

The user class is the entity that interacts with the system. The user uses the system
to manage audio-visual projects. There are two types of users denoted by the userRole
attribute. Admins can manage both users and projects. If a user or project needs to be
edited, deactivated, or reactivated, admins can do so. Basic users can manage their own
projects.

The Project class models a audio-visual project and all the metadata associated with it.
Projects contain the ProjectAccess class which determines who has access to the particular
project and their permissions associated with it. Projects also contain the ProjectData class
which holds the data used to generate the audio-visual. In order to generate an audio-
visual, several pieces of data are needed. ProjectData contains an Input class which models
the audio inputs used in the audio-visual. ProjectData also contains the SharedData class
which maintains some global properties needed to generate the audio-visual. The visual
primitives used to generate the visualizer are also contained in the ProjectData class. The
Component class models the different visual components that make up the visualizer. There
are several subclasses of the Component class which describe the visual primitives available.

11

Figure 3. UML Class Diagram
12

Figure 4. UML Class Diagram Continued

13

3.3. Application Interface

The UML Interface Diagram shown in Figure 5 describes the components, operations,
and interactions in the application portion of the system. This interface is responsible for
generating an audio-visual. The user interacts with several different editors to achieve this.

In order to make an audio-visual, the user needs to be able to add visual primitives to
the project. This is done using the LayerEditor class and the ComponentEditor class. The
LayerEditor class models the interface used to manage the different layers of the visual and
their elements. This class is also responsible for the order of layers and how they are rendered
in relation to one another. The ComponentEditor class models the interface used to manage
a particular visual primitive. As such, the ComponentEditor class will allow the user to
change various properties about a visual primitive. The Component class models the visual
primitives to be generated in the visual.

In order to make an audio-visual, the user needs to be able to add audio inputs to the
project. The AudioInputsEditor class models the interface used to manage the audio inputs.
The AudioPlayer class models the interface used to manage a particular audio input. The
AudioInput class models the audio inputs used in the visual.

In order to make an audio-visual, the user needs to be able to manage basic settings
associated with the project. The VisualSettingEditor class models the interface used to
manage global properties. The VisualSetting class models these global properties. The
AppSettingsEditor class models the interface used to manage application level settings. The
AppSetting class models these application level settings.

The rendering of the audio-visual happens in the Canvas class. This class takes in the
components, audio inputs, and settings.

14

Figure 5. UML Interface Diagram

3.4. Database

The Database Entity-Relationship Diagram shown in Figure 6 models the different ob-
jects and their relationships with one another from a database design perspective. Similar
to the UML Class Diagram section, the central entities are users and projects.

The user entity houses all the data that is important to store in regards to people inter-
acting with the system. The email and password are used for authenticated purposes. The
user’s firstName, lastName, and displayName are user friendly names used to describe who
the user is to other users in the system. The userRole property is used to describe what the
user’s role is in the system: admin or basic. Users have one relationship with the project
class: a user manages zero or many projects.

The project entity houses all the important data related to an audio-visual project. The
name property is a user defined friendly name associated with the project. The dateModified
property states when the project was lasted edited. The visibility property describes whither
this project is public, for anyone can view, or private, only the owner can view. The project
has one relationship with the projectData class: a project has projectData. The projectData
entity houses all the data needed to generated the audio-visual in the system: components,
inputs, and shared data. The project also has one relationship with projectAccess: a project
may have zero or more projectAccesses. The projectAccess entity houses all the data needed
to share a project with another user including the permissions of the access.

15

Figure 6. ER Diagram

3.5. User Interface Mockups

One of the important steps of the design process was designing the look and feel of
the application. User interface mockups were developed for each page of the application in
Figma, an online tool for creating UI mockups. These wireframe mockups helped guide the
development of the client application and sparked ideas on how to make the interface more
intuitive and user friendly. These mockups helped discover what web pages were needed and
how the navigation between them would work. These mockups also helped guide the usability
of the application’s menu system: the project level configuration menu and the component
level configuration menu. These menus were designed to open and close such that the user
could view the audio-visual in its entirety. Usability is one of the main cornerstones of this
project per the requirements, so it was important to have the application’s user interface
designed well. After these mockups were developed, they were presented to peers to ensure
they were going to enable the end user to build audio visualizations in an intuitive way.
These mockups were developed in the initial stages of the project development during sprint
one.

The application mockup of Figure 7 shows a rough sketch of what I initially designed
the user interface for the application portion of the project to look like. The menu on the
left hand side of the image shows the project level configuration editor. This editor has the
inputs necessary to specify the visual layers, the audio inputs, and global settings. The menu
on the right hand side of the image shows the component editor which has all the component
specific inputs necessary to customize a particular visual layer. For example, if a user were
configuring a cube, they would be presented with inputs for width, height, depth, color,
and a variety of other cube-related properties. In the center of the screen, where the Audio
Canvas logo is present, would contain the live video playback of the visual being worked on.
At the bottom of the image, if a user added an audio file as an input to the visualizer, a
audio controller would be present to play/pause and seek through the file.

16

Figure 7. User Interface UI Mockup

The mockup of Figure 8 shows a rough sketch of what the user interface for the project
management portion of the project would look like. This page was designed to allow the
user to browse, create, edit, and delete their projects. The left side of the table gives a brief
overview of the project. The right side of the table presents the operations the user can
perform on the project. The launch operation opens the project up for viewing or editing in
the application. The export operation exports the project to a file for sharing. The duplicate
operation, duplicates the project. The delete operation removes the project from the system.

17

Figure 8. Project Management UI Mockup

3.6. Final User Interface

The final user interface used in this system was based on the initial mockups but provides
many additional features that were discovered throughout the project development phase.
Figures showing the final user interface can be found in Appendix C.

Figure 9 shows what the user interface for the application looked like after completion.
This UI went through drastic changes to accommodate different product feature additions
and changes. However, the presence of the two main editors remained constant - one for
project level editing, and one for layer level editing. The project level editor added tabs for
audio input management and background/camera management. The ability to add multiple
audio inputs was not a part of the original project requirements and was added during one of
the sprint reviews. The audio controller at the bottom of the screen in the mockup was moved
to the audio input tab to accommodate this change. The background/camera management
tab was something that was not originally thought of when the mockup was developed. The
ability to control the background and camera such as position, rotation, and zoom of the
visualizer was needed. As for the component editor, the various types of inputs to control the
component remained constant. However, the presence of audio and time mapping tabs were
added. Controlling audio mapping and time mapping was originally going to be controlled
in one view with the component inputs. This functionality was separated out into different
tabs for usability. When the functionality was being developed in one view, the UI begin to
look and feel cluttered. The last addition to the application UI was the presence of the view
editor at the top of the screen. This editor was added for usability to easily hide all editors
and view the visualizer. This editor also housed the functionality to record and export the
audio-visual as a video file.

18

Figure 9. User Interface UI Mockup

Figure 10 shows what the user interface for project management looked like after comple-
tion. The main differences between the the final UI and the original mockup is the absence
of an export feature in the mockup, and an introduction of project sharing and visibility.
Project sharing is the ability to share a project with another user. This feature was originally
going to be accomplished by enabling projects to be exported as a file. This would allow
users to send that project file to another user, and the other user could import the project
into the system. During one of the sprint reviews, it was decided that keeping project sharing
workflow internal to the system would make more sense from a usability perspective. This
was accomplished by enabling users to control who has access to their projects. Users can
look up another user in the system and grant read/write access to their project. This also
enabled the functionality of collaboration: the ability for multiple user to contribute to the
same audio visualization project. The visibility feature was another addition to the system
that enabled users to specify whither the project was public or private. Other then these two
changes, most of the UI remained similar with some slight adjustment to styling to match
the rest of the application UI.

19

Figure 10. Project Management UI Mockup

20

4. Implementation

4.1. Technologies Used

The Audio Canvas application was developed using web technologies utilizing a client-
server design pattern. Accessing the application through the browser provided a more
portable interface. There are three different components: client, server, and database. This
section describes the technologies these three components utilized and why they were a good
fit for this software system.

4.1.1. Client

The client application contained most of the project weight. This component is responsi-
ble for providing an intuitive user interface capable of managing audio-visual projects. The
views, routing, and forms of client application used the ReactJS web library. This library
was a desirable choice because the project required complex dynamic web pages to be gener-
ated and manipulated by user input. ReactJS handles this well utilizing JSX to dynamically
manipulate web pages. JSX is a syntax extension of JavaScript that allows HTML-like em-
bedded documents to exist in JavaScript functions [8]. Figure 11 demonstrates how JSX
was used to dynamically generated menus and editors in this project. Another popular web
framework AngularJS would have been a good option as well as it uses similar ideas to build
dynamic web pages. However, ReactJS seems to be more appealing as it is slightly more
performant in the way it handles rendering the DOM.

{this.props.appSettings.view === "edit"

? <MainMenu canvasInterface={canvasInterface} />

: ""}

{this.props.appSettings.view === "edit"

? <ComponentEditor />

: ""}

<ViewEditor />

<Canvas />

Figure 11. Using JSX to Manage Menus and Editors

The main application’s canvas utilizes two different popular web technologies: Web Au-
dio API and BabylonJS. These technologies are supported by a vast majority of modern
browsers, making the application available to a sizable portion of web users. Using these
two technologies provided performant live feedback of the audio-visual.

The Web Audio API is responsible for deconstructing audio streams into frequency spec-
trum data and time domain data. Using this data, we can cast it upon visual properties to
make objects visually move with audio. There is not much of any alternative to the Web
Audio API in web technologies, so this was an obvious decision [11]. Figure 12 shows how
the Web Audio API was used to extract frequency and time domain information from an
audio analyser.

21

for (let key of Object.keys(_this.audio)) {

let index = _this.props.audioInputs.findIndex(a => a.id == key)

frequencyData[index] = _this.audio[key].audioAnalyser.getByteFrequencyData();

timeDomainData[index] = _this.audio[key].audioAnalyser.getByteTimeDomainData();

}

Figure 12. Using the Web Audio API to Extract Frequency and Time Domain Audio Data

BabylonJS is responsible for rendering the user defined visual components to a canvas.
BabylonJS is a WebGL abstraction and a scene graph system. WebGL is the web’s 3D
graphics standard: it is well integrated into browsers, well documented, and performant.
WebGL can utilize hardware accelerated graphics, taking advantage of the powerful GPUs
we have today [2]. Other popular graphic web technologies, Canvas API and SVG Graphics,
would have been decent options for the rendering aspect of this project as well. However,
the project aims to render 3D graphics which are not supported by these other technologies
out of the box. Figure 13 shows how BabylonJS was used to create and initialize a scene
from a canvas element.

const canvas = document.getElementById("renderCanvas");

_this.engine = new BABYLON.Engine(canvas, true);

_this.scene = new BABYLON.Scene(this.engine);

Figure 13. Using the BabylonJS Engine to Initialize the Scene

4.1.2. Server

The server application is responsible for handling the authentication, authorization, user
management, and project management. The server uses FeathersJS framework to manage
data services following the REST API architectural style. This framework fit well with this
project as the project did not require an extensive backend system. FeathersJS performs
all the necessary functionalities in a lightweight package. The server uses OAuth Standard
to serve JWT tokens that users must provide with their requests to access their resources.
The server also supports a user management system, where admin users can control user
access. For example, an admin can look up a user and deactivating that account. The system
also supports users performing create, read, update, and delete (CRUD) operations on their
projects. The product service endpoints shown in Table 3 demonstrates these operations. A
detailed listing of these API services can be found in Appendix B.

22

Endpoint GET /projects

Description Query projects

Inputs Search projects by attributes via query parameters

Responses
200 Ok – list of projects is returned
401 Not Authorized

Access Controls
admins have access to all projects
users have access to all public projects and their own private projects

Endpoint POST /projects

Description Create a project

Inputs
name: string
visibility: public/private

Responses
201 Created – project is returned
400 Bad Request – invalid parameters
401 Not Authorized

Notes project parameters are validated

Endpoint PATCH /projects/id

Description Update some project information

Inputs
name: string
visibility: public/private

Responses
200 Ok – updated project is returned
404 Not Found
401 Not Authorized

Access Controls
admins have access to all projects
users have access to their own projects and projects they have edit access

Notes project parameters are validated

Endpoint DELETE /projects/id

Description Delete a project

Responses
200 Ok – project is deleted
404 Not Found
401 Not Authorized

Access Controls users can delete their own projects

Table 3. Projects Service Example

23

The server exposes FeathersJS services for each of the data structures that require persis-
tence: users, projects, projectData, and projectAccess. These services offer a uniform way of
interacting with different data structures [5]. The FeathersJS class registrations create the
REST API endpoints and connect them to a database adapter. The project service registra-
tion shown in Figure 14 demonstrates how these services are setup following the FeathersJS
framework. This code can be interpreted as the “Projects” service is a MongoDB service
that uses the “projects” collection to store data and this service uses the “/projects” path.

class Projects extends Service {

constructor(options, app) {

super(options);

app.get('mongoClient').then(db => {

this.Model = db.collection('projects');

});

}

};

const options = { paginate: app.get('paginate')};

app.use('/projects', new Projects(options, app));

const service = app.service('projects');

service.hooks(hooks);

Figure 14. Project Service Registration

These services are controlled by hooks. Hooks are middleware functions that can register
before, after, or on errors in a service [5]. These hooks are used for authorization, validation,
data manipulation, error logging, and other use cases. The project service hooks as shown in
15 demonstrates how these hooks are registered. The hooks are executed in order from left
to right. During the create operation, the first hook ensures the request is authenticated. If
the request is not authenticated, the hook will immediately return a 401 - Not Authorized
response. The second hook validates the request data. This ensures the data passed to the
create function is in fact a project object. If the data does not pass this validation, a 400
Bad Request response is returned.

24

before: {

all: [],

find: [],

get: [],

create: [authenticate('jwt'), validate],

update: [authenticate('jwt'), hasWriteAcccess, validate],

patch: [authenticate('jwt'), hasWriteAcccess, validate],

remove: [authenticate('jwt'), hasWriteAcccess, validate]

},

after: {

all: [],

find: [hasReadAccess],

get: [hasReadAccess],

create: [],

update: [],

patch: [],

remove: []

},

error: {

all: [context => console.log(context.error)],

find: [],

get: [],

create: [],

update: [],

patch: [],

remove: []

}

Figure 15. Project Service Hooks

4.1.3. Database

The database system is responsible for the persistence of user and project data. User data
contains basic account information. Projects have nested component data to represent the
different layers of the image. These different components requires the database to be flexible
with respect to type checking. Since this data is hierarchical in structure, a document-based
database was a good fit. The database system uses MongoDB to save this data for this
reason. MongoDB provides a json-like document-based storage system that can handle this
flexibility.

25

4.2. Development

The application was developed in eighteen sprints. Sprints one through four contained
all the requirements pertaining to authentication flow and the user/project management.
Sprints four through sixteen contained all requirements regarding the interface that was
responsible for creating and customizing audio-visuals.

4.2.1. Data Management System

The data management portion of this system was built first. This included setting up
the database, server, and the client web pages responsible for user and project management.
This allowed for the create, read, update, and delete operations on users and projects. The
entire authentication flow was built in this portion of the project as well. This portion of
the project was built first because I wanted to have a solid backend system in place before
the application work of the project was started.

4.2.2. Application

The application portion of this project was built second. This included the user interface
required to customize and build audio-visuals. This portion of the project was built by
developing basic visuals first, then working towards more complex visuals. First, we had to
get some geometric primitives on the canvas and allow the user to edit them: cube, sphere,
polyhedron, etc. This was done by allowing the user to select from a list of supported
primitives and exposing parameters about those primitives to customize them. With these
parameters defined, the canvas can call BabylonJS to render the object. Once we had those
geometric primitives defined, we built the functionality to enable the user to manipulate those
geometric primitive parameters with audio data. Figure 16 shows the different primitives
available in the system and how a user can manipulate a particular primitive’s parameters.
Figure 17 shows an example of how the structure of inputs are defined for the “Box” type.

26

Figure 16. Geometric Primitives

case BOX_TYPE: {

return [

...defaultFields,

...geometricTransformFields,

{ name: "audio", type: "audio", isConstant: true },

{ name: "height", type: "range", min: .01, max: 20, step: .01 },

{ name: "width", type: "range", min: .01, max: 20, step: .01 },

{ name: "depth", type: "range", min: .01, max: 20, step: .01 },

...shapeFields,

]

}

Figure 17. Box Primitive Input Structure

This introduced the concept of audio inputs and the data processing around its frequency
and time domain data. This process of manipulating visual objects with audio data is
performed in the following manner: The user finds a parameter they want to move with
respect to an audio input. They specify a range over which this parameter will move within.
They select the particular audio data that they want captured: frequency spectrum, time
domain. They apply a filter on that data to specify what frequency range or what time
domain window they want passed through. The root mean square (RMS) is calculated for
the audio data generated. This value is normalized to determine at what point across the
parameter range the value lies at a given point in time [3]. Figure 18 demonstrates how
audio inputs are defined and how an input can be mapped to a particular parameter. Figure
19 shows how the root mean square (RMS) is calculated for this mapping process.

27

Figure 18. Audio Mapping

export const rmsFrequencyDomain = (audioData) => {

let avgPowerDecibels = 0;

if (audioData && audioData.length){

let sumOfSquares = 0;

for (let i = 0; i < audioData.length; i++) {

sumOfSquares += (Math.abs(audioData[i])) ** 2;

}

avgPowerDecibels = Math.sqrt(sumOfSquares / audioData.length);

}

return avgPowerDecibels.toFixed(2);

}

Figure 19. Root Mean Square Calculation (RMS)

Once geometric primitives were defined and their properties were able to be manipulated
by audio data, more complex visual object ideas were developed: grouping and time ani-
mations. Grouping takes individual visual components and orders them in a hierarchical
fashion. Time animations take component parameters and move them over time. Time
animations are configured in the following manner: The user finds a parameter they want
to move with respect to time. They specify the range over which this parameter will move
within. The choose how long this loop goes on for. They specify the path for which this
parameter travels over via a low frequency oscillator (LFO). With these tools in place the

28

user is now at the point where they can develop complex visuals that can move in and out
over time. Figure 20 demonstrates how components can be grouped and their parameters
can be mapped to time. Figure 21 shows how the current time determines the position in a
LFO and how that is calculated.

Figure 20. Grouping and Time Animations

const getTimeValue = (currentTime, loop, lfo, upperBound, lowerBound) => {

let positionInLFO = (currentTime % (loop * 1000)) / 1000 / loop * 100;

let highBoundIndex = lfo.findIndex(e => e.x > positionInLFO);

let lowBoundIndex = highBoundIndex - 1;

let rise = lfo[highBoundIndex].y - lfo[lowBoundIndex].y;

let run = lfo[highBoundIndex].x - lfo[lowBoundIndex].x;

let ratio = rise / run;

let value = (positionInLFO - lfo[lowBoundIndex].x) * ratio;

value += lfo[lowBoundIndex].y;

let factor = value / 100;

return (upperBound - lowerBound) * factor;

}

Figure 21. Time in LFO Calculation

29

5. Testing

5.1. Overview

Testing this software system verifies we were developing the system we set out to achieve,
and validates it was performing as we expect it to. The testing aspect of this project was
performed throughout development during the “TESTING” status of each sprint task. The
verification and validation of this system is discussed in this section.

5.2. Verification

During the design and implementation of this software system it was crucial to ensure
the system was developed to meet our main project goals: simplicity, portability, and col-
laboration. When it came time to decide on what technologies would be used to design this
system, these goals were at mind. Our portability goal played a key role in determining many
of the technologies used. For example, using web based system opens many possibilities for
cross platform support and connectivity through the internet. Each functional component
of the project pulled into sprints was developed with these goals in mind as well. Simplicity
also played a key role in the development of many of the user interface interactions. For
example, when developing how color would change with respect to time. It was determined
that a color gradient editor would be the most straightforward way to convey this, so the
user could specify what color an object was at any given point in time. Each sprint review
provided valuable time to reflect on the functional components developed during the sprint
and ask the question: Are we building the product right?

5.3. Validation

During the design and implementation of this software system it was important to ensure
the system was performing as we expected it to. Each sprint provided a time to test the
functional components built during that sprint. A few different validation testing techniques
were performed at this time.

User input testing was important for this project due to the large amount of inputs
necessary to customize an audio-visual project. The audio-visual editor application also has
numerous types of inputs: text, number, range, color, and others. These input fields were
tested using equivalence partitioning and boundary value analysis. Equivalence partitioning
breaks input domain data down into smaller more testable data classes. Boundary value
analysis targets input min/max values to find errors in an input’s range. Table 4 shows an
example of how test cases were constructed by targeting the box component class and testing
its height input boundaries.

30

Box Height Test Cases

Inputs

Height Width Depth Expected Output

1 -1 10 10 height set to .01

2 .01 10 10 height set to .01

3 .02 10 10 height set to .02

4 10 10 10 height set to 10

5 19.99 10 10 height set to 19.99

6 20 10 10 height set to 20

7 20.01 10 10 height set to 20

Table 4. Box Height Test Cases Example

Performance testing was also important for this project due to the nature of graphic pro-
cessing in a web environment. In an effort to ensure a quality and professional render, the
system needed to make sure the video playback of audio-visuals were reasonably performant.
To capture this, we used the frames per second (FPS) metric. FPS is a computer graphics
performance metric that captures the frequency at which images are displayed. For this
application, we determined 30fps as reasonably performant. 30fps will ensure the visual is
smoothly rendered with no flickering or skipping. Anything greater than 30fps will be func-
tioning as expected. This was validated through integration testing. The FPS performance
metric was provided by the BabylonJS graphics engine. This metric was tested against a
variety of different complex visuals in the system. This was done to stress test the graphi-
cal processing capabilities. At various points in the project development, these stress tests
failed. At this point, it was deemed necessary to rewrite processes in a more performant
manner. Overall, these performance tests pushed development towards outputting higher
quality video playback, and they were important in maintaining these standards.

Cross-Platform testing was another important testing aspect of this project. In order to
achieve our portability goal, this application was required to run on a variety of different
hardware and software systems. This testing was achieved by performing high-level project
workflows on a variety of devices and browsers. For example, the process of creating, editing,
and exporting and audio-visual was tested on Safari, Firefox, Google Chrome, Microsoft
Edge, IOS, and Android.

31

6. Security

6.1. Overview

The security expectations of this project is to protect the confidentiality and integrity
of the audio-visuals created in the system. It is also important to use best web security
practices to reduce the risk of potential software attacks. The security features used to
accomplish theses goals are discussed in this section.

6.2. Authentication and Authorization

This software system relys on a local authentication service to authorize user request to
access projects. This authorization service uses OAuth protocol to achieve this. When a user
signs into the system, a JSON Web Token (JWT) is generated and passed back to the client.
This token is used for all subsequent requests to access resources. Figure 22 demonstrates
this authorization flow. Since this system relys on local authentication, it is the systems
responsibility to maintain user credentials. All passwords are hashed with a bcrypt before
saving to the database system.

Figure 22. Authorization - Accessing Resources

The client only enables the user to access their own resources through the UI, however
it is the server responsibility to enforce this. Each endpoint on the server has a hook before

32

data is saved to the database to ensure the user has the necessary access controls to save the
data that was requested. Figure 23 shows an example of these access controls where a user
is not allowed to update another user’s project data.

const hasWriteAcccess = async (context) => {

let hasAccess = context.params.user.userRole === "admin";

if (!hasAccess) {

let project = await context.app.service('projects').get(context.id);

hasAccess = context.params.user._id == project.userId;

}

if (!hasAccess) {

throw new Forbidden();

}

}

Figure 23. Server API Access Controls

6.3. Web Security

It is important to ensure web applications are up to date with current web security
practices to reduce the risk of software attacks. The following methods were used to help
mitigate threats in this system.

The software system uses HTTPS to provide security through the Transport Layer Se-
curity (TLS) protocol. HTTPS ensures that HTTP traffic between the client and server
are encrypted. This encryption helps protect private data used in the system. HTTPS also
ensures the integrity of the data used in the system. HTTPS provides a digital signature
with each message sent over the internet. This enables the recipient to verify who sent the
message and ensure that it has not been tampered with.

This software system is heavily focused on user generated content. As such, the threat of
any potential malicious data entered into inputs on the client can enable cross-site scripting
(XSS) attacks. These types of attacks were mitigated through ReactJS’s use of JSX and
input sanitization. ReactJS helps prevent XSS attacks by escaping embedded values. This
ensures anything not directly written in JSX can not be rendered as HTML and is converted
to a string [8]. Input sanitation was also used to help mitigate the threat of Cross-Site
Scripting attacks. All inputs used to gather information from the user are filtered. For
example, text inputs only allow the necessary characters needed for the parameter.

33

7. Deployment

7.1. Overview

The application is available through a web browser. This was possible by deploying the
individual components of the system to different service providers. This section describes
how each individual component of the software system is hosted and deployed.

The client application is hosted using the Netlify web service. This portion of software
system only contains static web content. A modern approach to serving static content is
to use serverless computing, which is what Netlify offers. Netlify web service sets up the
necessary Amazon Web Services (AWS) under the hood to store and serve this content.
Netlify also aids in continuous deployment process by auto building and deploying commits
pushed to a git repository.

The server application is hosted on the Heroku web service platform. This portion of
the software system is containerized in Heroku. Heroku builds, runs, and operates the
server application. Heroku also aids in the continuous deployment process by building and
deploying commits pushed to a git repository.

The Database is hosted on the MongoDB Atlas web service. This portion of the software
system stores the user generated content in a cloud database service. Behind the scenes
MongoDB Atlas sets up the necessary Amazon Web Services (AWS) to store this data, as
well as allow read and write operations to it.

The goal of this deployment process was to provide an available proof of concept. The
current deployment methods utilized are not setup in a robust fashion to handle extensive
traffic. If this application was to be used in a more production friendly environment, ad-
ditional items would have to be considered such as monitoring, error logging, auto scaling,
load balancing, pricing, and others.

7.2. Mobile Application

This software system is also available through a mobile application. In some mobile
workflows, it is beneficial to work from within a app rather then a web browser on the device.
Mobile web browsers can be clunky and include unnecessary overhead. A small React Native
mobile application was developed to serve this web application through a WebView. This
makes it possible to have the web application available on IOS and Android platforms via a
mobile application.

34

8. Conclusion

8.1. Overview

This software system makes the process of creating an audio-visual more simple, portable,
and collaborative. This was done by designing and building a web application that enables
users to manage, edit, and share audio-visual projects. These projects can be configured by
managing audio inputs, adding visual elements to a canvas, and manipulate these elements
with respect to the audio inputs specified.

8.2. Challenges

One of the main obstacles of this project was ensuring the quality of the visual render.
When dealing with an application that uses graphical rendering, it is always is a little tricky
to achieve a quality render. The project development required constant attention to how
the various interactions with inputs were transformed into the rendered visual. For example,
when initially setting up the geometric primitive inputs to control an object on the canvas,
every time the user would move the range input, the render would see a large FPS drop
(30-60fps). This was happening because the input changes were reflected on the canvas live,
causing the canvas to rerender the image repeatedly. To overcome this, now the canvas is
only rerendered once the input is fully set.

Another challenging aspect of this project was ensuring multi-platform support. It was a
constant battle of implementing new features, then checking them against different browsers
and ensuring everything still worked. For example, when using the MediaRecorder (a part
of the MediaStream Recording API) to record the audio-visual, none of the main browsers
supported the same output file type. In order to get the MediaRecorder to work cross-
platform, there needs to be logic in place to recognize what environment the application is
running in to determine what output file type to use [7].

8.3. Learning Experience

If nothing else, this project was a great learning experience for myself. Throughout the
project, I had the opportunity to wear many hats: product owner, scrum master, developer,
and tester. I also had the opportunity to work with many different technologies that I
had no prior experience with: ReactJS, BabylonJS, Web Audio API, Netlify, Heroku, and
many others. I thoroughly enjoyed taking ownership of the project and seeing it all the way
through.

8.4. Future Work

I have received a lot of feedback from peers on improvements and new functionality to
improve the application. I plan to explore these ideas further. Some examples include au-
thenticating with OpenID Connect (Google, Facebook, Twitter, etc.), importing 3D Models
(.stl, .obj, etc.), some sort of mixing feature (blend multiple projects together), and many

35

more. At least for the time being, this application will be used by a small group of individ-
uals to create and share audio visualizations. There are future plans on potentially making
the application public for people to enjoy.

36

9. Bibliography

[1] Atlassian — Agile Coach. https://www.atlassian.com/, 2022.

[2] Babylon.js Documentation. https://doc.babylonjs.com, 2021.

[3] Wikipedia Contributors. Root Mean Square. https://en.wikipedia.org/wiki/Root_
mean_square, 2021.

[4] Wikipedia Contributors. FCurve. https://en.wikipedia.org/wiki/FCurve, 2022.

[5] Feathers — a Framework for Real-Time Applications and REST APIs. https://docs.
feathersjs.com, 2021.

[6] David C. Kung. Object-Oriented Software Engineering. McGraw-Hill Higher Education,
2013.

[7] MediaStream Recording API — Web API — MDN. https://developer.mozilla.

org/en-US/docs/Web/API/MediaStream_Recording_API, 2021.

[8] Getting Started – React. https://reactjs.org/docs/getting-started.html, 2021.

[9] Kenneth S. Rubin. Essential Scrum. Addison-Wesley Professional, 2012.

[10] Scrum.org — The Home of Scrum. https://www.scrum.org/, 2022.

[11] Web Audio API. MDN Web Docs. https://developer.mozilla.org/en-US/docs/

Web/API/Web_Audio_API, 2021.

37

https://www.atlassian.com/
https://doc.babylonjs.com
https://en.wikipedia.org/wiki/Root_mean_square
https://en.wikipedia.org/wiki/Root_mean_square
https://en.wikipedia.org/wiki/FCurve
https://docs.feathersjs.com
https://docs.feathersjs.com
https://developer.mozilla.org/en-US/docs/Web/API/MediaStream_Recording_API
https://developer.mozilla.org/en-US/docs/Web/API/MediaStream_Recording_API
https://reactjs.org/docs/getting-started.html
https://www.scrum.org/
https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API

10. Appendices

10.1. Appendix A: Project Requirements

Index 1.1 — Login

User Story As a user, I would like to be able to login to my account.

Acceptance
Criteria

User provides appropriate credentials – Logs into system
User provides inappropriate credentials – Error Message

Notes: Credentials - (email, password)

Index 1.2 — Logout

User Story As a user, I would like to be able to log out of the system.

Acceptance
Criteria

User clicks logout – Logs out of system provides inappropriate credentials –
Error Message

Index 1.3 — Register

User Story As a user, I would like to be able to register for a new account.

Acceptance
Criteria

User provides registration information – account is created
User provides illegitimate registration information – Error message

Notes: registration information - (email, password, display name, first name,
last name)

Table 5. Authentication Requirements

38

Index 2.1 — Create Project

User Story
As a user, I would like to be able to create a project, so I can save my visualizer
for future reference.

Acceptance
Criteria

User provides project information – project is created
User provides illegitimate information – Error message

Notes: Project information - (name, visibility – public or private)

Index 2.2 — Open Project

User Story As a user, I would like to be able to open a project, so I can view the visualizer.

Acceptance
Criteria

User clicks open – project is opened

Index 2.3 — Edit Project

User Story
As a user, I would like to be able to edit a project, so I can change the name
or visibility.

Acceptance
Criteria

User edits project name or visibility – project is updated

Index 2.4 — Delete Project

User Story
As a user, I would like to be able to delete a project, so I can remove it from
my list.

Acceptance
Criteria

User clicks delete – project is deleted

Index 2.5 — Share Project

User Story
As a user, I would like to share my project with another user, so we can
collaborate on the same project or enable the other user to view a private
project.

Acceptance
Criteria

User can enter in another user’s email address to share
“User not found” error message if user with email does not exist
User can specify if other user has read or write privileges to the project
Other user can view the project if they have read privileges.
Other user can edit the project if they have write privileges.

Notes: Project information - (name, visibility – public or private)

Table 6. Project Management Requirements

39

Index 3.1 — Admin View Users

User Story
As an admin, I would like to be able to view all users in the system, so I can
manage their access and permissions.

Acceptance
Criteria

Admins are presented with user screen to search through

Index 3.2 — Admin Edit User Permissions

User Story
As an admin, I would like to be able to edit a user’s account, so I can manage
their access and permissions.

Acceptance
Criteria

Admins can update “is active” and “user role” properties

Table 7. Admin Requirements

40

Index 4.1 — Multiple Audio Inputs

User Story
As a user, I would like to be able to specify multiple audio inputs, so I can
map my visualization components to different inputs.

Acceptance
Criteria

User can add and remove audio inputs from visualizer

Index 4.2 — File Input

User Story
As a user, I would like to be able to upload an audio file for my visualization,
so I can map my visualizer to it.

Acceptance
Criteria

User can upload an upload an audio file
User uploads file that is not an audio file – Error message

Index 4.3 — File Input Controls

User Story
As a user, I would like to be able to control my audio file inputs (play, pause,
seek, volume)

Acceptance
Criteria

User can play/pause
User can seek in track
User can specify volume

Index 4.4 — Microphone Input

User Story
As a user, I would like to be able to use a microphone input for my visualization,
so my visualizer can sync with live audio recordings.

Acceptance
Criteria

User can specify what microphone input to use
User can specify volume on input feed

Index 4.5 — Audio Data

User Story
As a user, I would like to be able to specify if my components are mapped to
frequency data or time domain data, so my visualizer can sync to both.

Acceptance
Criteria

User can select between using frequency data or time domain data

Index 4.6 — Audio Filter

User Story
As a user, I would like to be able to filter the audio data passed to my visualizer,
so I can tune what frequency range or time domain window is displayed.

Acceptance
Criteria

User can apply a low pass, high pass, band pass, or custom filter

Notes: When creating a custom filter, the user can specify breakpoints.

Table 8. Audio Input Requirements

41

Index 5.1 — Manage Layers

User Story
As a user, I would like to be able to manage my component layers, so I can
group my components, determine the order of the layers, and if they are visible
or not.

Acceptance
Criteria

User can choose from a list of supported components and add it as a layer
User can remove a layer
User can duplicate a layer
User can group layers together
User can add and remove layers from a group
User can reorder layers
User can toggle visibility of layer

Index 5.2 — Edit Component

User Story
As a user, I would like to be able to edit my component layers, so I can
customize how they appear.

Acceptance
Criteria

User can select/deselect component
User is shown component properties and can edit them

Table 9. Layer Requirements

42

Index 6.1 — Bar Graph

User Story
As a user, I would like to be able to add a custom bar graph to my visualization,
so I can view the frequency spectrum.

Acceptance
Criteria

User can add a bar chart to visualizer
User can customize properties on that bar chart

Notes: properties - (shape of bars, opacity, number of bars, distance between
bars, minimum height of bars, maximum height of bars, width of bars, mate-
rial)

Index 6.2 — Line Graph

User Story
As a user, I would like to be able to add a custom line graph to my visualization,
so I can view the time domain audio data.

Acceptance
Criteria

User can add a line chart to visualizer
User can customize properties on that line chart

Index 6.3 — Primitive Meshes

User Story
As a user, I would like to be able to add custom primitive meshes to my
visualization, so I can build a 3D visualizer.

Acceptance
Criteria

User can add primitive meshes to visualizer
User can customize properties on those primitive meshes

Notes: primitives - (plane, disc, ground, box, sphere, cylinder, capsule, poly-
hedron, torus, torus knot)
Primitives will have relevant properties that should be editable

Index 6.4 — Text

User Story
As a user, I would like to be able to add text to my visualizer, so I can add
titles and labels.

Acceptance
Criteria

User can add text to visualizer
User can customize properties on that text meshes

Notes: properties - (text, font, size, depth)

Table 10. Component Requirements

43

Index 7.1 — Geometric Transforms

User Story
As a user, I would like to be able to perform geometric transforms on my
components (position, rotation, scaling)

Acceptance
Criteria

User can position a component in the scene
User can rotate a component in the scene
User can scale a component in the scene

Index 7.2 — Images

User Story
As a user, I would like to be able to use images in my visualizer, so I can take
an existing image and include it in the visualizer

Acceptance
Criteria

User can map an image to a primitive mesh’s material
User can use an image as a static background

Index 7.3 — Webcam

User Story
As a user, I would like to be able to use my webcam in my visualizer, so I can
add live video recording to my visualizer

Acceptance
Criteria

User can map webcam to a primitive mesh’s material
User can use a webcam as background

Index 7.4 — Color Gradient

User Story
As a user, I would like to control the colors of my visualization with a color
gradient, so I can specify multiple colors and control how the visualizer pro-
gresses through them.

Acceptance
Criteria

User can define a color gradient
User can add as many colors as they want
User can specify the color gradient’s breakpoints

Table 11. Special Input Requirements

44

Index 8.1 — Background

User Story
As a user, I would like to be able to control the background of my visualization,
so I specify what is in the background.

Acceptance
Criteria

User can specify color of background
User can specify image as background
User can specify webcam as background

Index 8.2 — Camera

User Story
As a user, I would like to be able to control the camera on my visualization,
so I can control at what angle and zoom I am viewing the scene.

Acceptance
Criteria

User can set camera properties

Notes: Camera properties - (zoom, latitude, longitude, position)

Table 12. Scene Requirements

Index 9.1 — Audio Mapping

User Story
As a user, I would like to be able to move components with the audio inputs
I specified, so I can sync my visualizer with audio.

Acceptance
Criteria

User chooses an audio input, data, and filter
User can turn on/off parameters
User specifies a range in which the component’s parameter can move within
based on the data fed into it

Index 9.2 — Time Mapping

User Story
As a user, I would like to be able to move components with respect to time,
so I can have my visualizer change over time.

Acceptance
Criteria

User chooses parameter to move with time
User can create a parameter changing loop by specifying (loop length, param-
eter range, and LFO)

Table 13. Mapping Requirements

45

Index 10.1 — Record

User Story
As a user, I would like to be able to record my visualization, so I can save it
as a video file.

Acceptance
Criteria

User hits record button and audio visualizer recording starts.
User hits record button again an audio visualizer recording stops, and video
file is presented to user.

Notes: Recording should only capture what is on canvas

Table 14. Export Requirements

10.2. Appendix B: API Service Details

Endpoint POST /authentication

Description Retrieve an access token

Inputs

username: string
password: string
strategy: “jwt”
OR
accessToken: string
strategy: “jwt”
Notes: Credentials - (email, password)

Responses
201 Created – jwt access token is returned
401 Not Authorized – Invalid Login

Endpoint DELETE /authentication

Description Purge access token

Inputs accessToken: string

Responses
200 Ok – accessToken deleted
401 Not Authorized – Invalid Token

Table 15. Authentication Service

46

Endpoint GET /users

Description Query users

Inputs
Search user properties via query parameters
limit: int
skip: int

Responses
200 Ok – list of users is returned
401 Not Authorized

Access Controls only admins have access to this endpoint

Notes password is removed from response

Endpoint POST /users

Description Register a user

Inputs

firstName: string
lastName: string
displayName: string
email: string
password: string

Responses
201 Created – user is returned
400 Bad Request – email already in use
400 Bad Request – invalid parameters

Notes
user parameters are validated
password is hashed
password is removed from response

Endpoint GET /users/id

Description Retrieve a user

Responses
200 Ok – user is returned
404 Not Found
401 Not Authorized

Access Controls
admins can get all user information
users can retrieve their own information

Notes password is removed from response

Endpoint PATCH /users/id

Description Update some user information

47

Inputs

firstName: string
lastName: string
displayName: string
email: string
password: string
userRole: string

Responses
200 Ok – updated user is returned
404 Not Found
401 Not Authorized

Access Controls Only admins are allowed to update user information

Notes
user parameters are validated
password is hashed
password is removed from response

Table 16. Users Service

48

Endpoint GET /projects

Description Query projects

Inputs
Search projects via query parameters
limit: int
skip: int

Responses
200 Ok – list of projects is returned
401 Not Authorized

Access Controls
admins have access to all projects
users have access to all public projects and their own private projects

Endpoint POST /projects

Description Create a project

Inputs
name: string
visibility: public — private

Responses
201 Created – project is returned
400 Bad Request – invalid parameters
401 Not Authorized

Notes project parameters are validated

Endpoint GET /projects/id

Description Retrieve a project

Responses
200 Ok – project is returned
404 Not Found
401 Not Authorized

Access Controls
admins have access to all projects
users have access to all public projects and their own private projects

Endpoint PATCH /projects/id

Description Update some project information

Inputs
name: string
visibility: public — private

Responses
200 Ok – updated project is returned
404 Not Found
401 Not Authorized

49

Access Controls
admins have access to all projects
users have access to their own projects and projects they have edit access
to

Notes project parameters are validated

Endpoint DELETE /projects/id

Description Delete a project

Responses
200 Ok – project is deleted
404 Not Found
401 Not Authorized

Access Controls users can delete their own projects

Table 17. Projects Service

50

Endpoint GET/project-data

Description Retrieve project data

Inputs
Search project data properties via query parameters
limit: int
skip: int

Responses
200 Ok – list of project data is returned
404 Not Found
401 Not Authorized

Access Controls
admins have access to all projects
users have access to all public projects and their own private projects

Endpoint POST /project-data

Description Create project data

Inputs

projectId: string
components: Array¡Component¿
inputs: Array¡Input¿
sharedData: SharedData

Responses
201 Created – project is returned
400 Bad Request – invalid parameters
401 Not Authorized

Access Controls
admins have access to all projects
users have access to their own projects and projects they have edit access
to

Notes project data parameters are validated

Endpoint PATCH /project-data/id

Description Update some project data information

Inputs

projectId: string
components: Array¡Component¿
inputs: Array¡Input¿
sharedData: SharedData

Responses
200 Ok – updated project data is returned
404 Not Found
401 Not Authorized

Access Controls
admins have access to all projects
users have access to their own projects and projects they have edit access
to

51

Notes project data parameters are validated

Endpoint DELETE /project-data/id

Description Delete project data

Responses
200 Ok – project data is deleted
404 Not Found
401 Not Authorized

Access Controls users can delete from their own projects

Table 18. Project Data Service

52

Endpoint GET/project-access

Description Retrieve project accesses

Inputs
Search project access properties via query parameters
limit: int
skip: int

Responses
200 Ok – list of project access is returned
404 Not Found
401 Not Authorized

Access Controls users have access to their own projects

Endpoint POST /project-access

Description Create project access

Inputs
projectId: string
userId: string
access: read — write

Responses
201 Created – project access is returned
400 Bad Request – invalid parameters
401 Not Authorized

Access Controls users have access to their own projects

Notes project access parameters are validated

Endpoint PATCH /project-access/id

Description Update some project access information

Inputs
userId: string
access: read — write

Responses
200 Ok – updated project access is returned
404 Not Found
401 Not Authorized

Access Controls users have access to their own projects

Notes project access parameters are validated

Endpoint DELETE /project-access/id

Description Delete project access

Responses
200 Ok – project access is deleted
404 Not Found
401 Not Authorized

53

Access Controls users can delete from their own projects

Table 19. Project Access Service

54

10.3. Appendix C: Graphical User Interface

Figure 24. Home Page

Figure 25. Discover Page

55

Figure 26. Register Page

Figure 27. Login Page

56

Figure 28. My Projects Page

Figure 29. Collaborative Projects Page

57

Figure 30. Application Page - Components

58

Figure 31. Application Page - Audio Mapping

59

Figure 32. Application Page - Shared Settings and Time Mapping

60

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Glossary
	Introduction
	Overview
	Background
	Goals

	Software Development Process
	Overview
	Life Cycle Model Analysis
	Waterfall Model
	Prototyping Model
	Spiral Model
	Scrum Model

	Overview of the Development Process

	Design
	Overview
	UML Class Diagram
	Application Interface
	Database
	User Interface Mockups
	Final User Interface

	Implementation
	Technologies Used
	Client
	Server
	Database

	Development
	Data Management System
	Application

	Testing
	Overview
	Verification
	Validation

	Security
	Overview
	Authentication and Authorization
	Web Security

	Deployment
	Overview
	Mobile Application

	Conclusion
	Overview
	Challenges
	Learning Experience
	Future Work

	Bibliography
	Appendices
	Appendix A: Project Requirements
	Appendix B: API Service Details
	Appendix C: Graphical User Interface

